語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Admissibility and hyperbolicity
~
Barreira, Luis.
Admissibility and hyperbolicity
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Admissibility and hyperbolicity/ by Luis Barreira, Davor Dragicevic, Claudia Valls.
作者:
Barreira, Luis.
其他作者:
Dragicevic, Davor.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
ix, 145 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Mathematics. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-90110-7
ISBN:
9783319901107
Admissibility and hyperbolicity
Barreira, Luis.
Admissibility and hyperbolicity
[electronic resource] /by Luis Barreira, Davor Dragicevic, Claudia Valls. - Cham :Springer International Publishing :2018. - ix, 145 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
1. Introduction -- 2. Exponential Contractions -- 3. Exponential Dichotomies: Discrete Time -- 4. Exponential Dichotomies: Continuous Time -- 5. Admissibility: Further Developments -- 6. Applications of Admissibility -- References -- Index.
This book gives a comprehensive overview of the relationship between admissibility and hyperbolicity. Essential theories and selected developments are discussed with highlights to applications. The dedicated readership includes researchers and graduate students specializing in differential equations and dynamical systems (with emphasis on hyperbolicity) who wish to have a broad view of the topic and working knowledge of its techniques. The book may also be used as a basis for appropriate graduate courses on hyperbolicity; the pointers and references given to further research will be particularly useful. The material is divided into three parts: the core of the theory, recent developments, and applications. The first part pragmatically covers the relation between admissibility and hyperbolicity, starting with the simpler case of exponential contractions. It also considers exponential dichotomies, both for discrete and continuous time, and establishes corresponding results building on the arguments for exponential contractions. The second part considers various extensions of the former results, including a general approach to the construction of admissible spaces and the study of nonuniform exponential behavior. Applications of the theory to the robustness of an exponential dichotomy, the characterization of hyperbolic sets in terms of admissibility, the relation between shadowing and structural stability, and the characterization of hyperbolicity in terms of Lyapunov sequences are given in the final part.
ISBN: 9783319901107
Standard No.: 10.1007/978-3-319-90110-7doiSubjects--Topical Terms:
527692
Mathematics.
LC Class. No.: QA313
Dewey Class. No.: 515.42
Admissibility and hyperbolicity
LDR
:02767nam a2200325 a 4500
001
925890
003
DE-He213
005
20180502122601.0
006
m d
007
cr nn 008maaau
008
190625s2018 gw s 0 eng d
020
$a
9783319901107
$q
(electronic bk.)
020
$a
9783319901091
$q
(paper)
024
7
$a
10.1007/978-3-319-90110-7
$2
doi
035
$a
978-3-319-90110-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA313
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.42
$2
23
090
$a
QA313
$b
.B271 2018
100
1
$a
Barreira, Luis.
$3
677314
245
1 0
$a
Admissibility and hyperbolicity
$h
[electronic resource] /
$c
by Luis Barreira, Davor Dragicevic, Claudia Valls.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
ix, 145 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
1. Introduction -- 2. Exponential Contractions -- 3. Exponential Dichotomies: Discrete Time -- 4. Exponential Dichotomies: Continuous Time -- 5. Admissibility: Further Developments -- 6. Applications of Admissibility -- References -- Index.
520
$a
This book gives a comprehensive overview of the relationship between admissibility and hyperbolicity. Essential theories and selected developments are discussed with highlights to applications. The dedicated readership includes researchers and graduate students specializing in differential equations and dynamical systems (with emphasis on hyperbolicity) who wish to have a broad view of the topic and working knowledge of its techniques. The book may also be used as a basis for appropriate graduate courses on hyperbolicity; the pointers and references given to further research will be particularly useful. The material is divided into three parts: the core of the theory, recent developments, and applications. The first part pragmatically covers the relation between admissibility and hyperbolicity, starting with the simpler case of exponential contractions. It also considers exponential dichotomies, both for discrete and continuous time, and establishes corresponding results building on the arguments for exponential contractions. The second part considers various extensions of the former results, including a general approach to the construction of admissible spaces and the study of nonuniform exponential behavior. Applications of the theory to the robustness of an exponential dichotomy, the characterization of hyperbolic sets in terms of admissibility, the relation between shadowing and structural stability, and the characterization of hyperbolicity in terms of Lyapunov sequences are given in the final part.
650
0
$a
Mathematics.
$3
527692
650
0
$a
Difference equations.
$3
527665
650
0
$a
Functional equations.
$3
527838
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
650
2 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Difference and Functional Equations.
$3
672077
700
1
$a
Dragicevic, Davor.
$3
1203974
700
1
$a
Valls, Claudia.
$3
677315
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
883715
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-90110-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入