語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Singular spectrum analysis = using R /
~
Hassani, Hossein.
Singular spectrum analysis = using R /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Singular spectrum analysis/ by Hossein Hassani, Rahim Mahmoudvand.
其他題名:
using R /
作者:
Hassani, Hossein.
其他作者:
Mahmoudvand, Rahim.
出版者:
London :Palgrave Macmillan UK : : 2018.,
面頁冊數:
xiii, 149 p. :digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Time-series analysis - Computer programs. -
電子資源:
http://dx.doi.org/10.1057/978-1-137-40951-5
ISBN:
9781137409515
Singular spectrum analysis = using R /
Hassani, Hossein.
Singular spectrum analysis
using R /[electronic resource] :by Hossein Hassani, Rahim Mahmoudvand. - London :Palgrave Macmillan UK :2018. - xiii, 149 p. :digital ;24 cm. - Palgrave advanced texts in econometrics. - Palgrave advanced texts in econometrics..
Preface -- 1. Univariate Singular Spectrum Analysis -- 2. Multivariate Singular Spectrum Analysis -- 3. Applications of Singular Spectrum Analysis -- 4. More on Filtering and Forecasting by SSA -- A. A Short Introduction to R -- B. Theoretical explanations.
This book provides a broad introduction to computational aspects of Singular Spectrum Analysis (SSA) which is a non-parametric technique and requires no prior assumptions such as stationarity, normality or linearity of the series. This book is unique as it not only details the theoretical aspects underlying SSA, but also provides a comprehensive guide enabling the user to apply the theory in practice using the R software. Further, it provides the user with step- by- step coding and guidance for the practical application of the SSA technique to analyze their time series databases using R. The first two chapters present basic notions of univariate and multivariate SSA and their implementations in R environment. The next chapters discuss the applications of SSA to change point detection, missing-data imputation, smoothing and filtering. This book is appropriate for researchers, upper level students (masters level and beyond) and practitioners wishing to revive their knowledge of times series analysis or to quickly learn about the main mechanisms of SSA.
ISBN: 9781137409515
Standard No.: 10.1057/978-1-137-40951-5doiSubjects--Topical Terms:
660947
Time-series analysis
--Computer programs.
LC Class. No.: QA280 / .H377 2018
Dewey Class. No.: 519.55028551
Singular spectrum analysis = using R /
LDR
:02322nam a2200325 a 4500
001
927081
003
DE-He213
005
20190103090428.0
006
m d
007
cr nn 008maaau
008
190626s2018 enk s 0 eng d
020
$a
9781137409515
$q
(electronic bk.)
020
$a
9781137409508
$q
(paper)
024
7
$a
10.1057/978-1-137-40951-5
$2
doi
035
$a
978-1-137-40951-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA280
$b
.H377 2018
072
7
$a
KC
$2
bicssc
072
7
$a
BUS000000
$2
bisacsh
082
0 4
$a
519.55028551
$2
23
090
$a
QA280
$b
.H353 2018
100
1
$a
Hassani, Hossein.
$3
1206068
245
1 0
$a
Singular spectrum analysis
$h
[electronic resource] :
$b
using R /
$c
by Hossein Hassani, Rahim Mahmoudvand.
260
$a
London :
$b
Palgrave Macmillan UK :
$b
Imprint: Palgrave Pivot,
$c
2018.
300
$a
xiii, 149 p. :
$b
digital ;
$c
24 cm.
490
1
$a
Palgrave advanced texts in econometrics
505
0
$a
Preface -- 1. Univariate Singular Spectrum Analysis -- 2. Multivariate Singular Spectrum Analysis -- 3. Applications of Singular Spectrum Analysis -- 4. More on Filtering and Forecasting by SSA -- A. A Short Introduction to R -- B. Theoretical explanations.
520
$a
This book provides a broad introduction to computational aspects of Singular Spectrum Analysis (SSA) which is a non-parametric technique and requires no prior assumptions such as stationarity, normality or linearity of the series. This book is unique as it not only details the theoretical aspects underlying SSA, but also provides a comprehensive guide enabling the user to apply the theory in practice using the R software. Further, it provides the user with step- by- step coding and guidance for the practical application of the SSA technique to analyze their time series databases using R. The first two chapters present basic notions of univariate and multivariate SSA and their implementations in R environment. The next chapters discuss the applications of SSA to change point detection, missing-data imputation, smoothing and filtering. This book is appropriate for researchers, upper level students (masters level and beyond) and practitioners wishing to revive their knowledge of times series analysis or to quickly learn about the main mechanisms of SSA.
650
0
$a
Time-series analysis
$x
Computer programs.
$3
660947
650
0
$a
Spectrum analysis
$x
Computer programs.
$3
1206070
650
0
$a
Spectral theory (Mathematics)
$3
527757
650
0
$a
Decomposition (Mathematics)
$3
672292
650
0
$a
R (Computer program language)
$3
679069
650
1 4
$a
Economics.
$3
555568
650
2 4
$a
Economics, general.
$3
1069499
700
1
$a
Mahmoudvand, Rahim.
$3
1206069
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Palgrave advanced texts in econometrics.
$3
939480
856
4 0
$u
http://dx.doi.org/10.1057/978-1-137-40951-5
950
$a
Economics and Finance (Springer-41170)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入