語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical probability = an introduct...
~
Pages, Gilles.
Numerical probability = an introduction with applications to finance /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Numerical probability/ by Gilles Pages.
其他題名:
an introduction with applications to finance /
作者:
Pages, Gilles.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xxi, 579 p. :digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Probabilities. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-90276-0
ISBN:
9783319902760
Numerical probability = an introduction with applications to finance /
Pages, Gilles.
Numerical probability
an introduction with applications to finance /[electronic resource] :by Gilles Pages. - Cham :Springer International Publishing :2018. - xxi, 579 p. :digital ;24 cm. - Universitext,0172-5939. - Universitext..
1 Simulation of random variables -- 2 The Monte Carlo method and applications to option pricing -- 3 Variance reduction -- 4 The Quasi-Monte Carlo method -- 5 Optimal Quantization methods I: cubatures -- 6 Stochastic approximation with applications to finance -- 7 Discretization scheme(s) of a Brownian diffusion -- 8 The diffusion bridge method: application to path-dependent options (II) -- 9 Biased Monte Carlo simulation, Multilevel paradigm -- 10 Back to sensitivity computation -- 11 Optimal stopping, Multi-asset American/Bermuda Options -- 12 Miscellany.
This textbook provides a self-contained introduction to numerical methods in probability with a focus on applications to finance. Topics covered include the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation, and more recent developments such as the multilevel paradigm), stochastic optimization and approximation, discretization schemes of stochastic differential equations, as well as optimal quantization methods. The author further presents detailed applications to numerical aspects of pricing and hedging of financial derivatives, risk measures (such as value-at-risk and conditional value-at-risk), implicitation of parameters, and calibration. Aimed at graduate students and advanced undergraduate students, this book contains useful examples and over 150 exercises, making it suitable for self-study.
ISBN: 9783319902760
Standard No.: 10.1007/978-3-319-90276-0doiSubjects--Topical Terms:
527847
Probabilities.
LC Class. No.: QA273 / .P344 2018
Dewey Class. No.: 519.2
Numerical probability = an introduction with applications to finance /
LDR
:02455nam a2200337 a 4500
001
927975
003
DE-He213
005
20190129163729.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319902760
$q
(electronic bk.)
020
$a
9783319902746
$q
(paper)
024
7
$a
10.1007/978-3-319-90276-0
$2
doi
035
$a
978-3-319-90276-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA273
$b
.P344 2018
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.2
$2
23
090
$a
QA273
$b
.P134 2018
100
1
$a
Pages, Gilles.
$3
1207664
245
1 0
$a
Numerical probability
$h
[electronic resource] :
$b
an introduction with applications to finance /
$c
by Gilles Pages.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xxi, 579 p. :
$b
digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
1 Simulation of random variables -- 2 The Monte Carlo method and applications to option pricing -- 3 Variance reduction -- 4 The Quasi-Monte Carlo method -- 5 Optimal Quantization methods I: cubatures -- 6 Stochastic approximation with applications to finance -- 7 Discretization scheme(s) of a Brownian diffusion -- 8 The diffusion bridge method: application to path-dependent options (II) -- 9 Biased Monte Carlo simulation, Multilevel paradigm -- 10 Back to sensitivity computation -- 11 Optimal stopping, Multi-asset American/Bermuda Options -- 12 Miscellany.
520
$a
This textbook provides a self-contained introduction to numerical methods in probability with a focus on applications to finance. Topics covered include the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation, and more recent developments such as the multilevel paradigm), stochastic optimization and approximation, discretization schemes of stochastic differential equations, as well as optimal quantization methods. The author further presents detailed applications to numerical aspects of pricing and hedging of financial derivatives, risk measures (such as value-at-risk and conditional value-at-risk), implicitation of parameters, and calibration. Aimed at graduate students and advanced undergraduate students, this book contains useful examples and over 150 exercises, making it suitable for self-study.
650
0
$a
Probabilities.
$3
527847
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Quantitative Finance.
$3
669372
650
2 4
$a
Statistics for Business/Economics/Mathematical Finance/Insurance.
$3
669275
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
881573
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-90276-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入