語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bilinear regression analysis = an in...
~
Rosen, Dietrich von.
Bilinear regression analysis = an introduction /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Bilinear regression analysis/ by Dietrich von Rosen.
其他題名:
an introduction /
作者:
Rosen, Dietrich von.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xiii, 468 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Regression analysis. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-78784-8
ISBN:
9783319787848
Bilinear regression analysis = an introduction /
Rosen, Dietrich von.
Bilinear regression analysis
an introduction /[electronic resource] :by Dietrich von Rosen. - Cham :Springer International Publishing :2018. - xiii, 468 p. :ill., digital ;24 cm. - Lecture notes in statistics,2200930-0325 ;. - Lecture notes in statistics ;205..
Preface -- Introduction -- The Basic Ideas of Obtaining MLEs: A Known Dispersion -- The Basic Ideas of Obtaining MLEs: Unknown Dispersion -- Basic Properties of Estimators -- Density Approximations -- Residuals -- Testing Hypotheses -- Influential Observations -- Appendices -- Indices.
This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis.
ISBN: 9783319787848
Standard No.: 10.1007/978-3-319-78784-8doiSubjects--Topical Terms:
569541
Regression analysis.
LC Class. No.: QA278.2 / .R674 2018
Dewey Class. No.: 519.536
Bilinear regression analysis = an introduction /
LDR
:02413nam a2200325 a 4500
001
927982
003
DE-He213
005
20190130135200.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319787848
$q
(electronic bk.)
020
$a
9783319787824
$q
(paper)
024
7
$a
10.1007/978-3-319-78784-8
$2
doi
035
$a
978-3-319-78784-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
$b
.R674 2018
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.536
$2
23
090
$a
QA278.2
$b
.R813 2018
100
1
$a
Rosen, Dietrich von.
$3
1207670
245
1 0
$a
Bilinear regression analysis
$h
[electronic resource] :
$b
an introduction /
$c
by Dietrich von Rosen.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiii, 468 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in statistics,
$x
0930-0325 ;
$v
220
505
0
$a
Preface -- Introduction -- The Basic Ideas of Obtaining MLEs: A Known Dispersion -- The Basic Ideas of Obtaining MLEs: Unknown Dispersion -- Basic Properties of Estimators -- Density Approximations -- Residuals -- Testing Hypotheses -- Influential Observations -- Appendices -- Indices.
520
$a
This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis.
650
0
$a
Regression analysis.
$3
569541
650
1 4
$a
Statistics.
$3
556824
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
672090
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
782247
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in statistics ;
$v
205.
$3
889359
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-78784-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入