語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-objective optimization = evolu...
~
Mandal, Jyotsna K.
Multi-objective optimization = evolutionary to hybrid framework /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multi-objective optimization/ edited by Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta.
其他題名:
evolutionary to hybrid framework /
其他作者:
Mandal, Jyotsna K.
出版者:
Singapore :Springer Singapore : : 2018.,
面頁冊數:
xvi, 318 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Mathematical optimization. -
電子資源:
http://dx.doi.org/10.1007/978-981-13-1471-1
ISBN:
9789811314711
Multi-objective optimization = evolutionary to hybrid framework /
Multi-objective optimization
evolutionary to hybrid framework /[electronic resource] :edited by Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta. - Singapore :Springer Singapore :2018. - xvi, 318 p. :ill. (some col.), digital ;24 cm.
Chapter 1. An Advance Overview of Single and Multi-Objective Optimization -- Chapter 2. Non-dominated Sorting Based Multi/Many Objective Optimization: Two Decades of Research and Application -- Chapter 3. Uncertain Multi-objective Portfolio Selection Model based on Genetic Algorithm -- Chapter 4. A Multiobjective Genetic Algorithm-based Approach for Identifying Relevant and Non-redundant Cancer-MicroRNA Markers -- Chapter 5. Application of Multi-objective Optimizations in Protein Structure Prediction -- Chapter 6. Multi-target Multiobjective Programming and Patrol Manpower Planning for Traffic Management via Genetic Algorithm -- Chapter 7. Multi-objective Optimization for Key Player Identification in Networks -- Chapter 8. Joint Maximization in Energy and Spectral Efficiency in Cooperative Cognitive Radio Networks -- Chapter 9. A Neoteric Multi-Objective Framework for Engineering Process Optimization: Metaheuristics and Experimental Designs based Approach -- Chapter 10. Multi/Many Objective Optimization - Hybrid Intelligent Framework -- Chapter 11. Efficiency Maximization of Multimedia Data Mining using Multiobjective Neuro-ACO Approach -- Chapter 12. Optimized Determination of Separating Hyper-Plane of an SVM - Hybrid Multiobjective Model -- Chapter 13. Efficient Cluster Head Selection in Wireless Sensor Network using Multiobjective Model -- Chapter 14. Achieving Optimized Bio-Metric Security in E-Governance by Multiobjective Neuro Approach -- Chapter 15. Advantage of Quantum Inspired Multiobjective Genetic Algorithm over Classical Multiobjective Genetic Algorithm -- Chapter 16. Optimizing Performance Parameter of Image Segmentation using Hybrid Multiobjective Framework.
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.
ISBN: 9789811314711
Standard No.: 10.1007/978-981-13-1471-1doiSubjects--Topical Terms:
527675
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Multi-objective optimization = evolutionary to hybrid framework /
LDR
:03515nam a2200337 a 4500
001
928300
003
DE-He213
005
20180818072725.0
006
m d
007
cr nn 008maaau
008
190626s2018 si s 0 eng d
020
$a
9789811314711
$q
(electronic bk.)
020
$a
9789811314704
$q
(paper)
024
7
$a
10.1007/978-981-13-1471-1
$2
doi
035
$a
978-981-13-1471-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
UYA
$2
bicssc
072
7
$a
UYAM
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.M961 2018
245
0 0
$a
Multi-objective optimization
$h
[electronic resource] :
$b
evolutionary to hybrid framework /
$c
edited by Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta.
260
$a
Singapore :
$c
2018.
$b
Springer Singapore :
$b
Imprint: Springer,
300
$a
xvi, 318 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Chapter 1. An Advance Overview of Single and Multi-Objective Optimization -- Chapter 2. Non-dominated Sorting Based Multi/Many Objective Optimization: Two Decades of Research and Application -- Chapter 3. Uncertain Multi-objective Portfolio Selection Model based on Genetic Algorithm -- Chapter 4. A Multiobjective Genetic Algorithm-based Approach for Identifying Relevant and Non-redundant Cancer-MicroRNA Markers -- Chapter 5. Application of Multi-objective Optimizations in Protein Structure Prediction -- Chapter 6. Multi-target Multiobjective Programming and Patrol Manpower Planning for Traffic Management via Genetic Algorithm -- Chapter 7. Multi-objective Optimization for Key Player Identification in Networks -- Chapter 8. Joint Maximization in Energy and Spectral Efficiency in Cooperative Cognitive Radio Networks -- Chapter 9. A Neoteric Multi-Objective Framework for Engineering Process Optimization: Metaheuristics and Experimental Designs based Approach -- Chapter 10. Multi/Many Objective Optimization - Hybrid Intelligent Framework -- Chapter 11. Efficiency Maximization of Multimedia Data Mining using Multiobjective Neuro-ACO Approach -- Chapter 12. Optimized Determination of Separating Hyper-Plane of an SVM - Hybrid Multiobjective Model -- Chapter 13. Efficient Cluster Head Selection in Wireless Sensor Network using Multiobjective Model -- Chapter 14. Achieving Optimized Bio-Metric Security in E-Governance by Multiobjective Neuro Approach -- Chapter 15. Advantage of Quantum Inspired Multiobjective Genetic Algorithm over Classical Multiobjective Genetic Algorithm -- Chapter 16. Optimizing Performance Parameter of Image Segmentation using Hybrid Multiobjective Framework.
520
$a
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.
650
0
$a
Mathematical optimization.
$3
527675
650
1 4
$a
Computer Science.
$3
593922
650
2 4
$a
Mathematics of Computing.
$3
669457
650
2 4
$a
Optimization.
$3
669174
650
2 4
$a
Computational Intelligence.
$3
768837
700
1
$a
Mandal, Jyotsna K.
$3
1208216
700
1
$a
Mukhopadhyay, Somnath.
$3
1171776
700
1
$a
Dutta, Paramartha.
$3
1048724
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-981-13-1471-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入