語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational aspects and applicatio...
~
Kalyagin, Valery A.
Computational aspects and applications in large-scale networks = NET 2017, Nizhny Novgorod, Russia, June 2017 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Computational aspects and applications in large-scale networks/ edited by Valery A. Kalyagin ... [et al.].
其他題名:
NET 2017, Nizhny Novgorod, Russia, June 2017 /
其他作者:
Kalyagin, Valery A.
團體作者:
Workshop on the Preservation of Stability under Discretization
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xvii, 354 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Network analysis (Planning) -
電子資源:
http://dx.doi.org/10.1007/978-3-319-96247-4
ISBN:
9783319962474
Computational aspects and applications in large-scale networks = NET 2017, Nizhny Novgorod, Russia, June 2017 /
Computational aspects and applications in large-scale networks
NET 2017, Nizhny Novgorod, Russia, June 2017 /[electronic resource] :edited by Valery A. Kalyagin ... [et al.]. - Cham :Springer International Publishing :2018. - xvii, 354 p. :ill., digital ;24 cm. - Springer proceedings in mathematics & statistics,v.2472194-1009 ;. - Springer proceedings in mathematics & statistics ;v.24..
Part I: Network Computational Algorithms -- Batsyn, M., Bychkov, I., Komosko, L. and Nikolaev, A: Tabu Search for Fleet Size and Mix Vehicle Routing Problem with Hard and Soft Time Windows -- Gribanov, D: FPT-algorithms for The Shortest Lattice Vector and Integer Linear Programming Problems -- Kharchevnikova, A. and Savchenko, A: The Video-Based Age and Gender Recognition with Convolution Neural Networks -- Mokeev, D. B: On forbidden Induced Subgraphs for the Class of Triangle-Konig Graphs -- Orlov, A: The Global Search Theory Approach to the Bilevel Pricing Problem in Telecommunication Networks -- Rubchinsky, A: Graph Dichotomy Algorithm and Its Applications to Analysis of Stocks Market -- Sokolova, A. and Savchenko, A: Cluster Analysis of Facial Video Data in Video Surveillance Systems Using Deep Learning -- Utkina, I: Using Modular Decomposition Technique to Solve the Maximum Clique Problem -- Part II: Network Models -- Koldanov, A. and Voronina, M: Robust Statistical Procedures for Testing Dynamics in Market Network -- Konnov, I: Application of Market Models to Network Equilibrium Problems -- Konnov, I. and Pinyagina, O: Selective Bi-coordinate Variations for Network Equilibrium Problems with Mixed Demand -- Makrushin, S: Developing a Model of Topological Structure Formation for Power Transmission Grids Based on the Analysis of the UNEG -- Nelyubin, A., Podinovski, V. and Potapov, M: Methods of Criteria Importance Theory and Their Software Implementation -- Ponomarenko, A., Utkina, I. and Batsyn, M: A Model of Optimal Network Structure for Decentralized Nearest Neighbor Search -- Semenov, A., Gorbatenko, D. and Kochemazov, S: Computational Study of Activation Dynamics on Networks of Arbitrary Structure -- Semenov, D. and Koldanov, P: Rejection Graph for Multiple Testing of Elliptical Model for Market Network -- Zaytsev, D. and Drozdova, D: Mapping Paradigms of Social Sciences: Application of Network Analysis -- Part III: Network Applications -- Belyaev, M., Dodonova, Y., Belyaeva, D., Krivov, E., Gutman, B., Faskowitz, J., Jahanshad, N. and Thompson, P: Using Geometry of the Set of Symmetric Positive Semidefinite Matrices to Classify Structural Brain Networks -- Grechikhin, I. and Kalyagin, V: Comparison of Statistical Procedures for Gaussian Graphical Model Selection -- Karpov, N., Lyashuk, A. and Vizgunov, A: Sentiment Analysis Using Deep Learning -- Koldanov, P: Invariance Properties of Statistical Procedures for Network Structures Identification -- Kurmukov, A., Dodonova, Y., Burova, M., Mussabayeva, A., Petrov, D., Faskowitz, J. and Zhukov, L: Topological Modules of Human Brain Networks are Anatomically Embedded: Evidence from Modularity Analysis at Multiple Scales -- Kostyakova, N., Karpov, I., Makarov, I. and Zhukov, L. E: Commercial Astroturfing Detection in Social Networks -- Laptsuev, R., Ananyeva, M., Meinster, D., Karpov, I., Makarov, I. and Zhukov, L. E: Information Propagation Strategies in Online Social Networks -- Matveeva, N. and Poldin, O: Analysis of Co-authorship Networks and Scientific Citation Based on Google Scholar -- Sidorov, S., Faizliev, A., Balash, V., Gudkov, A., Chekmareva, A. and Anikin, P: Company Co-Mention Network Analysis.
Contributions in this volume focus on computationally efficient algorithms and rigorous mathematical theories for analyzing large-scale networks. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis. Computational aspects and applications of large-scale networks in market models, neural networks, social networks, power transmission grids, maximum clique problem, telecommunication networks, and complexity graphs are included with new tools for efficient network analysis of large-scale networks. This proceeding is a result of the 7th International Conference in Network Analysis, held at the Higher School of Economics, Nizhny Novgorod in June 2017. The conference brought together scientists, engineers, and researchers from academia, industry, and government.
ISBN: 9783319962474
Standard No.: 10.1007/978-3-319-96247-4doiSubjects--Topical Terms:
643913
Network analysis (Planning)
LC Class. No.: T57.85
Dewey Class. No.: 003.72
Computational aspects and applications in large-scale networks = NET 2017, Nizhny Novgorod, Russia, June 2017 /
LDR
:05288nam a2200349 a 4500
001
928631
003
DE-He213
005
20190304141825.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319962474
$q
(electronic bk.)
020
$a
9783319962467
$q
(paper)
024
7
$a
10.1007/978-3-319-96247-4
$2
doi
035
$a
978-3-319-96247-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
T57.85
072
7
$a
KJT
$2
bicssc
072
7
$a
KJM
$2
bicssc
072
7
$a
BUS049000
$2
bisacsh
072
7
$a
BUS042000
$2
bisacsh
082
0 4
$a
003.72
$2
23
090
$a
T57.85
$b
.I61 2017
111
2
$a
Workshop on the Preservation of Stability under Discretization
$d
(2001 :
$c
Fort Collins, Colo.)
$3
527686
245
1 0
$a
Computational aspects and applications in large-scale networks
$h
[electronic resource] :
$b
NET 2017, Nizhny Novgorod, Russia, June 2017 /
$c
edited by Valery A. Kalyagin ... [et al.].
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xvii, 354 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer proceedings in mathematics & statistics,
$x
2194-1009 ;
$v
v.247
505
0
$a
Part I: Network Computational Algorithms -- Batsyn, M., Bychkov, I., Komosko, L. and Nikolaev, A: Tabu Search for Fleet Size and Mix Vehicle Routing Problem with Hard and Soft Time Windows -- Gribanov, D: FPT-algorithms for The Shortest Lattice Vector and Integer Linear Programming Problems -- Kharchevnikova, A. and Savchenko, A: The Video-Based Age and Gender Recognition with Convolution Neural Networks -- Mokeev, D. B: On forbidden Induced Subgraphs for the Class of Triangle-Konig Graphs -- Orlov, A: The Global Search Theory Approach to the Bilevel Pricing Problem in Telecommunication Networks -- Rubchinsky, A: Graph Dichotomy Algorithm and Its Applications to Analysis of Stocks Market -- Sokolova, A. and Savchenko, A: Cluster Analysis of Facial Video Data in Video Surveillance Systems Using Deep Learning -- Utkina, I: Using Modular Decomposition Technique to Solve the Maximum Clique Problem -- Part II: Network Models -- Koldanov, A. and Voronina, M: Robust Statistical Procedures for Testing Dynamics in Market Network -- Konnov, I: Application of Market Models to Network Equilibrium Problems -- Konnov, I. and Pinyagina, O: Selective Bi-coordinate Variations for Network Equilibrium Problems with Mixed Demand -- Makrushin, S: Developing a Model of Topological Structure Formation for Power Transmission Grids Based on the Analysis of the UNEG -- Nelyubin, A., Podinovski, V. and Potapov, M: Methods of Criteria Importance Theory and Their Software Implementation -- Ponomarenko, A., Utkina, I. and Batsyn, M: A Model of Optimal Network Structure for Decentralized Nearest Neighbor Search -- Semenov, A., Gorbatenko, D. and Kochemazov, S: Computational Study of Activation Dynamics on Networks of Arbitrary Structure -- Semenov, D. and Koldanov, P: Rejection Graph for Multiple Testing of Elliptical Model for Market Network -- Zaytsev, D. and Drozdova, D: Mapping Paradigms of Social Sciences: Application of Network Analysis -- Part III: Network Applications -- Belyaev, M., Dodonova, Y., Belyaeva, D., Krivov, E., Gutman, B., Faskowitz, J., Jahanshad, N. and Thompson, P: Using Geometry of the Set of Symmetric Positive Semidefinite Matrices to Classify Structural Brain Networks -- Grechikhin, I. and Kalyagin, V: Comparison of Statistical Procedures for Gaussian Graphical Model Selection -- Karpov, N., Lyashuk, A. and Vizgunov, A: Sentiment Analysis Using Deep Learning -- Koldanov, P: Invariance Properties of Statistical Procedures for Network Structures Identification -- Kurmukov, A., Dodonova, Y., Burova, M., Mussabayeva, A., Petrov, D., Faskowitz, J. and Zhukov, L: Topological Modules of Human Brain Networks are Anatomically Embedded: Evidence from Modularity Analysis at Multiple Scales -- Kostyakova, N., Karpov, I., Makarov, I. and Zhukov, L. E: Commercial Astroturfing Detection in Social Networks -- Laptsuev, R., Ananyeva, M., Meinster, D., Karpov, I., Makarov, I. and Zhukov, L. E: Information Propagation Strategies in Online Social Networks -- Matveeva, N. and Poldin, O: Analysis of Co-authorship Networks and Scientific Citation Based on Google Scholar -- Sidorov, S., Faizliev, A., Balash, V., Gudkov, A., Chekmareva, A. and Anikin, P: Company Co-Mention Network Analysis.
520
$a
Contributions in this volume focus on computationally efficient algorithms and rigorous mathematical theories for analyzing large-scale networks. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis. Computational aspects and applications of large-scale networks in market models, neural networks, social networks, power transmission grids, maximum clique problem, telecommunication networks, and complexity graphs are included with new tools for efficient network analysis of large-scale networks. This proceeding is a result of the 7th International Conference in Network Analysis, held at the Higher School of Economics, Nizhny Novgorod in June 2017. The conference brought together scientists, engineers, and researchers from academia, industry, and government.
650
0
$a
Network analysis (Planning)
$3
643913
650
0
$a
Large scale systems
$v
Congresses.
$3
885397
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Operations Research, Management Science.
$3
785065
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
884110
650
2 4
$a
Combinatorics.
$3
669353
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
700
1
$a
Kalyagin, Valery A.
$3
1073781
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer proceedings in mathematics & statistics ;
$v
v.24.
$3
883338
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-96247-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入