語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Supervised learning with quantum com...
~
Schuld, Maria.
Supervised learning with quantum computers
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Supervised learning with quantum computers/ by Maria Schuld, Francesco Petruccione.
作者:
Schuld, Maria.
其他作者:
Petruccione, Francesco.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xiii, 287 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Quantum theory. -
電子資源:
https://doi.org/10.1007/978-3-319-96424-9
ISBN:
9783319964249
Supervised learning with quantum computers
Schuld, Maria.
Supervised learning with quantum computers
[electronic resource] /by Maria Schuld, Francesco Petruccione. - Cham :Springer International Publishing :2018. - xiii, 287 p. :ill., digital ;24 cm. - Quantum science and technology,2364-9054. - Quantum science and technology..
Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ''quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
ISBN: 9783319964249
Standard No.: 10.1007/978-3-319-96424-9doiSubjects--Topical Terms:
568041
Quantum theory.
LC Class. No.: Q325.5 / .S385 2018
Dewey Class. No.: 006.31
Supervised learning with quantum computers
LDR
:03121nam a2200337 a 4500
001
928742
003
DE-He213
005
20190305131516.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319964249
$q
(electronic bk.)
020
$a
9783319964232
$q
(paper)
024
7
$a
10.1007/978-3-319-96424-9
$2
doi
035
$a
978-3-319-96424-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.S385 2018
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.S386 2018
100
1
$a
Schuld, Maria.
$3
1208887
245
1 0
$a
Supervised learning with quantum computers
$h
[electronic resource] /
$c
by Maria Schuld, Francesco Petruccione.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiii, 287 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Quantum science and technology,
$x
2364-9054
505
0
$a
Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
520
$a
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ''quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
650
0
$a
Quantum theory.
$3
568041
650
0
$a
Machine learning.
$3
561253
650
1 4
$a
Quantum Physics.
$3
671960
650
2 4
$a
Quantum Computing.
$3
883739
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Quantum Information Technology, Spintronics.
$3
783474
650
2 4
$a
Numerical and Computational Physics, Simulation.
$3
1112293
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
593924
700
1
$a
Petruccione, Francesco.
$3
1208888
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Quantum science and technology.
$3
1019952
856
4 0
$u
https://doi.org/10.1007/978-3-319-96424-9
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入