語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Textual and visual information retri...
~
Shaila, S. G.
Textual and visual information retrieval using query refinement and pattern analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Textual and visual information retrieval using query refinement and pattern analysis/ by S. G. Shaila, A. Vadivel.
作者:
Shaila, S. G.
其他作者:
Vadivel, A.
出版者:
Singapore :Springer Singapore : : 2018.,
面頁冊數:
xxvi, 123 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Information retrieval. -
電子資源:
https://doi.org/10.1007/978-981-13-2559-5
ISBN:
9789811325595
Textual and visual information retrieval using query refinement and pattern analysis
Shaila, S. G.
Textual and visual information retrieval using query refinement and pattern analysis
[electronic resource] /by S. G. Shaila, A. Vadivel. - Singapore :Springer Singapore :2018. - xxvi, 123 p. :ill., digital ;24 cm.
Chapter 1. Architecture Specification of Rule-Based Deep Web Crawler with Indexer -- Chapter 2. Information Classification and Organization using Neuro-Fuzzy Model Event Retrieval. Chapter 3. N-Gram Thesaurus Generation for Query Expansion and Refinement using Tag Term Weight for Information Retrieval -- Chapter 4. Smooth Weighted Color Histogram using Human Visual Perception for CBIR Applications -- Chapter 5. Indexing and Encoding Color Histogram with Bin Overlapped Similarity Measure for Image Retrieval -- Chapter 6. Summary and Conclusion.
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book's overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
ISBN: 9789811325595
Standard No.: 10.1007/978-981-13-2559-5doiSubjects--Topical Terms:
563691
Information retrieval.
LC Class. No.: ZA3075
Dewey Class. No.: 025.04
Textual and visual information retrieval using query refinement and pattern analysis
LDR
:02417nam a2200337 a 4500
001
928951
003
DE-He213
005
20180930021250.0
006
m d
007
cr nn 008maaau
008
190626s2018 si s 0 eng d
020
$a
9789811325595
$q
(electronic bk.)
020
$a
9789811325588
$q
(paper)
024
7
$a
10.1007/978-981-13-2559-5
$2
doi
035
$a
978-981-13-2559-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
ZA3075
072
7
$a
UNH
$2
bicssc
072
7
$a
COM030000
$2
bisacsh
072
7
$a
UNH
$2
thema
072
7
$a
UND
$2
thema
082
0 4
$a
025.04
$2
23
090
$a
ZA3075
$b
.S526 2018
100
1
$a
Shaila, S. G.
$3
1209207
245
1 0
$a
Textual and visual information retrieval using query refinement and pattern analysis
$h
[electronic resource] /
$c
by S. G. Shaila, A. Vadivel.
260
$a
Singapore :
$c
2018.
$b
Springer Singapore :
$b
Imprint: Springer,
300
$a
xxvi, 123 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. Architecture Specification of Rule-Based Deep Web Crawler with Indexer -- Chapter 2. Information Classification and Organization using Neuro-Fuzzy Model Event Retrieval. Chapter 3. N-Gram Thesaurus Generation for Query Expansion and Refinement using Tag Term Weight for Information Retrieval -- Chapter 4. Smooth Weighted Color Histogram using Human Visual Perception for CBIR Applications -- Chapter 5. Indexing and Encoding Color Histogram with Bin Overlapped Similarity Measure for Image Retrieval -- Chapter 6. Summary and Conclusion.
520
$a
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book's overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
650
0
$a
Information retrieval.
$3
563691
650
0
$a
Content-based image retrieval.
$3
891844
650
1 4
$a
Information Storage and Retrieval.
$3
593926
650
2 4
$a
Multimedia Information Systems.
$3
669810
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Pattern Recognition.
$3
669796
700
1
$a
Vadivel, A.
$3
1209208
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-2559-5
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入