語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Binomial ideals
~
Hibi, Takayuki.
Binomial ideals
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Binomial ideals/ by Jurgen Herzog, Takayuki Hibi, Hidefumi Ohsugi.
作者:
Herzog, Jurgen.
其他作者:
Hibi, Takayuki.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xix, 321 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Commutative algebra. -
電子資源:
https://doi.org/10.1007/978-3-319-95349-6
ISBN:
9783319953496
Binomial ideals
Herzog, Jurgen.
Binomial ideals
[electronic resource] /by Jurgen Herzog, Takayuki Hibi, Hidefumi Ohsugi. - Cham :Springer International Publishing :2018. - xix, 321 p. :ill., digital ;24 cm. - Graduate texts in mathematics,2790072-5285 ;. - Graduate texts in mathematics ;253..
Part I: Basic Concepts -- Polynomial Rings and Grobner Bases -- Review of Commutative Algebra -- Part II:Binomial Ideals and Convex Polytopes -- Introduction to Binomial Ideals -- Convex Polytopes and Unimodular Triangulations -- Part III. Applications in Combinatorics and Statistics- Edge Polytopes and Edge Rings -- Join-Meet Ideals of Finite Lattices -- Binomial Edge Ideals and Related Ideals -- Ideals Generated by 2-Minors -- Statistics -- References -- Index.
This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics. The book begins with a brief, self-contained overview of the modern theory of Grobner bases and the necessary algebraic and homological concepts from commutative algebra. Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes. Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics. Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics. Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.
ISBN: 9783319953496
Standard No.: 10.1007/978-3-319-95349-6doiSubjects--Topical Terms:
672047
Commutative algebra.
LC Class. No.: QA251.3 / .H479 2018
Dewey Class. No.: 512.44
Binomial ideals
LDR
:02853nam a2200337 a 4500
001
929212
003
DE-He213
005
20190315105754.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319953496
$q
(electronic bk.)
020
$a
9783319953472
$q
(paper)
024
7
$a
10.1007/978-3-319-95349-6
$2
doi
035
$a
978-3-319-95349-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA251.3
$b
.H479 2018
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBF
$2
thema
082
0 4
$a
512.44
$2
23
090
$a
QA251.3
$b
.H582 2018
100
1
$a
Herzog, Jurgen.
$3
782061
245
1 0
$a
Binomial ideals
$h
[electronic resource] /
$c
by Jurgen Herzog, Takayuki Hibi, Hidefumi Ohsugi.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xix, 321 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Graduate texts in mathematics,
$x
0072-5285 ;
$v
279
505
0
$a
Part I: Basic Concepts -- Polynomial Rings and Grobner Bases -- Review of Commutative Algebra -- Part II:Binomial Ideals and Convex Polytopes -- Introduction to Binomial Ideals -- Convex Polytopes and Unimodular Triangulations -- Part III. Applications in Combinatorics and Statistics- Edge Polytopes and Edge Rings -- Join-Meet Ideals of Finite Lattices -- Binomial Edge Ideals and Related Ideals -- Ideals Generated by 2-Minors -- Statistics -- References -- Index.
520
$a
This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics. The book begins with a brief, self-contained overview of the modern theory of Grobner bases and the necessary algebraic and homological concepts from commutative algebra. Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes. Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics. Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics. Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.
650
0
$a
Commutative algebra.
$3
672047
650
0
$a
Binomial theorem.
$3
930849
650
1 4
$a
Commutative Rings and Algebras.
$3
672054
650
2 4
$a
Convex and Discrete Geometry.
$3
672138
650
2 4
$a
Combinatorics.
$3
669353
700
1
$a
Hibi, Takayuki.
$3
782062
700
1
$a
Ohsugi, Hidefumi.
$3
1209612
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Graduate texts in mathematics ;
$v
253.
$3
774333
856
4 0
$u
https://doi.org/10.1007/978-3-319-95349-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入