語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Python data analytics = with Pandas,...
~
Nelli, Fabio.
Python data analytics = with Pandas, NumPy, and Matplotlib /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Python data analytics/ by Fabio Nelli.
其他題名:
with Pandas, NumPy, and Matplotlib /
作者:
Nelli, Fabio.
出版者:
Berkeley, CA :Apress : : 2018.,
面頁冊數:
xix, 569 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Python (Computer program language) -
電子資源:
https://doi.org/10.1007/978-1-4842-3913-1
ISBN:
9781484239131
Python data analytics = with Pandas, NumPy, and Matplotlib /
Nelli, Fabio.
Python data analytics
with Pandas, NumPy, and Matplotlib /[electronic resource] :by Fabio Nelli. - 2nd ed. - Berkeley, CA :Apress :2018. - xix, 569 p. :ill., digital ;24 cm.
1. An Introduction to Data Analysis -- 2. Introduction to the Python's World -- 3. The NumPy Library -- 4. The pandas Library-- An Introduction -- 5. pandas: Reading and Writing Data -- 6. pandas in Depth: Data Manipulation -- 7. Data Visualization with matplotlib -- 8. Machine Learning with scikit-learn -- 9. Deep Learning with TensorFlow -- 10. An Example - Meteorological Data -- 11. Embedding the JavaScript D3 Library in IPython Notebook -- 12. Recognizing Handwritten Digits -- 13. Textual data Analysis with NLTK -- 14. Image Analysis and Computer Vision with OpenCV -- Appendix A -- Appendix B.
Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data.
ISBN: 9781484239131
Standard No.: 10.1007/978-1-4842-3913-1doiSubjects--Topical Terms:
566246
Python (Computer program language)
LC Class. No.: QA76.73.P98 / N455 2018
Dewey Class. No.: 005.133
Python data analytics = with Pandas, NumPy, and Matplotlib /
LDR
:02682nam a2200337 a 4500
001
929307
003
DE-He213
005
20190318170227.0
006
m d
007
cr nn 008maaau
008
190626s2018 cau s 0 eng d
020
$a
9781484239131
$q
(electronic bk.)
020
$a
9781484239124
$q
(paper)
024
7
$a
10.1007/978-1-4842-3913-1
$2
doi
035
$a
978-1-4842-3913-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.P98
$b
N455 2018
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.P98
$b
N422 2018
100
1
$a
Nelli, Fabio.
$3
1068168
245
1 0
$a
Python data analytics
$h
[electronic resource] :
$b
with Pandas, NumPy, and Matplotlib /
$c
by Fabio Nelli.
250
$a
2nd ed.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xix, 569 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. An Introduction to Data Analysis -- 2. Introduction to the Python's World -- 3. The NumPy Library -- 4. The pandas Library-- An Introduction -- 5. pandas: Reading and Writing Data -- 6. pandas in Depth: Data Manipulation -- 7. Data Visualization with matplotlib -- 8. Machine Learning with scikit-learn -- 9. Deep Learning with TensorFlow -- 10. An Example - Meteorological Data -- 11. Embedding the JavaScript D3 Library in IPython Notebook -- 12. Recognizing Handwritten Digits -- 13. Textual data Analysis with NLTK -- 14. Image Analysis and Computer Vision with OpenCV -- Appendix A -- Appendix B.
520
$a
Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data.
650
0
$a
Python (Computer program language)
$3
566246
650
0
$a
Data mining.
$3
528622
650
1 4
$a
Python.
$3
1115944
650
2 4
$a
Big Data.
$3
1017136
650
2 4
$a
Computing Methodologies.
$3
640210
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-3913-1
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入