語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multimodal sentiment analysis
~
Poria, Soujanya.
Multimodal sentiment analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multimodal sentiment analysis/ by Soujanya Poria, Amir Hussain, Erik Cambria.
作者:
Poria, Soujanya.
其他作者:
Hussain, Amir.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xi, 214 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-95020-4
ISBN:
9783319950204
Multimodal sentiment analysis
Poria, Soujanya.
Multimodal sentiment analysis
[electronic resource] /by Soujanya Poria, Amir Hussain, Erik Cambria. - Cham :Springer International Publishing :2018. - xi, 214 p. :ill. (some col.), digital ;24 cm. - Socio-affective computing,v.82509-5706 ;. - Socio-affective computing ;v.1..
Preface -- Introduction and Motivation -- Background -- Literature Survey and Datasets -- Concept Extraction from Natural Text for Concept Level Text Analysis -- EmoSenticSpace: Dense concept-based affective features with common-sense knowledge -- Sentic Patterns: Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns -- Combining Textual Clues with Audio-Visual Information for Multimodal Sentiment Analysis -- Conclusion and Future Work -- Index.
This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion. The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis.
ISBN: 9783319950204
Standard No.: 10.1007/978-3-319-95020-4doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342 / .P675 2018
Dewey Class. No.: 006.3
Multimodal sentiment analysis
LDR
:02545nam a2200337 a 4500
001
929480
003
DE-He213
005
20190320164453.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319950204
$q
(electronic bk.)
020
$a
9783319950181
$q
(paper)
024
7
$a
10.1007/978-3-319-95020-4
$2
doi
035
$a
978-3-319-95020-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q342
$b
.P675 2018
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
072
7
$a
PSAN
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q342
$b
.P836 2018
100
1
$a
Poria, Soujanya.
$3
1210110
245
1 0
$a
Multimodal sentiment analysis
$h
[electronic resource] /
$c
by Soujanya Poria, Amir Hussain, Erik Cambria.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xi, 214 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Socio-affective computing,
$x
2509-5706 ;
$v
v.8
505
0
$a
Preface -- Introduction and Motivation -- Background -- Literature Survey and Datasets -- Concept Extraction from Natural Text for Concept Level Text Analysis -- EmoSenticSpace: Dense concept-based affective features with common-sense knowledge -- Sentic Patterns: Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns -- Combining Textual Clues with Audio-Visual Information for Multimodal Sentiment Analysis -- Conclusion and Future Work -- Index.
520
$a
This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion. The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Human-computer interaction.
$3
555546
650
1 4
$a
Neurosciences.
$3
593561
650
2 4
$a
Multimedia Information Systems.
$3
669810
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Language Translation and Linguistics.
$3
670050
650
2 4
$a
Translation.
$3
796482
700
1
$a
Hussain, Amir.
$3
783888
700
1
$a
Cambria, Erik.
$3
883904
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Socio-affective computing ;
$v
v.1.
$3
1070256
856
4 0
$u
https://doi.org/10.1007/978-3-319-95020-4
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入