語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Crowdsourced data management = hybri...
~
SpringerLink (Online service)
Crowdsourced data management = hybrid machine-human computing /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Crowdsourced data management/ by Guoliang Li ... [et al.].
其他題名:
hybrid machine-human computing /
其他作者:
Li, Guoliang.
出版者:
Singapore :Springer Singapore : : 2018.,
面頁冊數:
xii, 159 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Database management. -
電子資源:
https://doi.org/10.1007/978-981-10-7847-7
ISBN:
9789811078477
Crowdsourced data management = hybrid machine-human computing /
Crowdsourced data management
hybrid machine-human computing /[electronic resource] :by Guoliang Li ... [et al.]. - Singapore :Springer Singapore :2018. - xii, 159 p. :ill., digital ;24 cm.
1. Introduction -- 2. Crowdsourcing Background. 3. Quality Control -- 4. Cost Control -- 5. Latency Control -- 6. Crowdsourcing Database Systems and Optimization -- 7. Crowdsourced Operators -- Conclusion.
This book provides an overview of crowdsourced data management. Covering all aspects including the workflow, algorithms and research potential, it particularly focuses on the latest techniques and recent advances. The authors identify three key aspects in determining the performance of crowdsourced data management: quality control, cost control and latency control. By surveying and synthesizing a wide spectrum of studies on crowdsourced data management, the book outlines important factors that need to be considered to improve crowdsourced data management. It also introduces a practical crowdsourced-database-system design and presents a number of crowdsourced operators. Self-contained and covering theory, algorithms, techniques and applications, it is a valuable reference resource for researchers and students new to crowdsourced data management with a basic knowledge of data structures and databases.
ISBN: 9789811078477
Standard No.: 10.1007/978-981-10-7847-7doiSubjects--Topical Terms:
557799
Database management.
LC Class. No.: QA76.9.D3
Dewey Class. No.: 005.74
Crowdsourced data management = hybrid machine-human computing /
LDR
:02091nam a2200325 a 4500
001
929540
003
DE-He213
005
20181013031051.0
006
m d
007
cr nn 008maaau
008
190626s2018 si s 0 eng d
020
$a
9789811078477
$q
(electronic bk.)
020
$a
9789811078460
$q
(paper)
024
7
$a
10.1007/978-981-10-7847-7
$2
doi
035
$a
978-981-10-7847-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D3
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.74
$2
23
090
$a
QA76.9.D3
$b
C953 2018
245
0 0
$a
Crowdsourced data management
$h
[electronic resource] :
$b
hybrid machine-human computing /
$c
by Guoliang Li ... [et al.].
260
$a
Singapore :
$c
2018.
$b
Springer Singapore :
$b
Imprint: Springer,
300
$a
xii, 159 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Introduction -- 2. Crowdsourcing Background. 3. Quality Control -- 4. Cost Control -- 5. Latency Control -- 6. Crowdsourcing Database Systems and Optimization -- 7. Crowdsourced Operators -- Conclusion.
520
$a
This book provides an overview of crowdsourced data management. Covering all aspects including the workflow, algorithms and research potential, it particularly focuses on the latest techniques and recent advances. The authors identify three key aspects in determining the performance of crowdsourced data management: quality control, cost control and latency control. By surveying and synthesizing a wide spectrum of studies on crowdsourced data management, the book outlines important factors that need to be considered to improve crowdsourced data management. It also introduces a practical crowdsourced-database-system design and presents a number of crowdsourced operators. Self-contained and covering theory, algorithms, techniques and applications, it is a valuable reference resource for researchers and students new to crowdsourced data management with a basic knowledge of data structures and databases.
650
0
$a
Database management.
$3
557799
650
0
$a
Crowdsourcing.
$3
1210200
650
1 4
$a
Big Data.
$3
1017136
650
2 4
$a
Database Management.
$3
669820
650
2 4
$a
Special Purpose and Application-Based Systems.
$3
669833
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Mobile Computing.
$3
1115990
700
1
$a
Li, Guoliang.
$3
1210199
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-10-7847-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入