語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A parametric approach to nonparametr...
~
Alvo, Mayer.
A parametric approach to nonparametric statistics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
A parametric approach to nonparametric statistics/ by Mayer Alvo, Philip L. H. Yu.
作者:
Alvo, Mayer.
其他作者:
Yu, Philip L. H.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xiv, 279 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Nonparametric statistics. -
電子資源:
https://doi.org/10.1007/978-3-319-94153-0
ISBN:
9783319941530
A parametric approach to nonparametric statistics
Alvo, Mayer.
A parametric approach to nonparametric statistics
[electronic resource] /by Mayer Alvo, Philip L. H. Yu. - Cham :Springer International Publishing :2018. - xiv, 279 p. :ill., digital ;24 cm. - Springer series in the data sciences,2365-5674. - Springer series in the data sciences..
I. Introduction and Fundamentals -- Introduction -- Fundamental Concepts in Parametric Inference -- II. Modern Nonparametric Statistical Methods -- Smooth Goodness of Fit Tests -- One-Sample and Two-Sample Problems -- Multi-Sample Problems -- Tests for Trend and Association -- Optimal Rank Tests -- Efficiency -- III. Selected Applications -- Multiple Change-Point Problems -- Bayesian Models for Ranking Data -- Analysis of Censored Data -- A. Description of Data Sets.
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
ISBN: 9783319941530
Standard No.: 10.1007/978-3-319-94153-0doiSubjects--Topical Terms:
527779
Nonparametric statistics.
LC Class. No.: QA278.8 / .A486 2018
Dewey Class. No.: 519.54
A parametric approach to nonparametric statistics
LDR
:02288nam a2200349 a 4500
001
929788
003
DE-He213
005
20190326172112.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319941530
$q
(electronic bk.)
020
$a
9783319941523
$q
(paper)
024
7
$a
10.1007/978-3-319-94153-0
$2
doi
035
$a
978-3-319-94153-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.8
$b
.A486 2018
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.54
$2
23
090
$a
QA278.8
$b
.A476 2018
100
1
$a
Alvo, Mayer.
$3
1210565
245
1 2
$a
A parametric approach to nonparametric statistics
$h
[electronic resource] /
$c
by Mayer Alvo, Philip L. H. Yu.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiv, 279 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in the data sciences,
$x
2365-5674
505
0
$a
I. Introduction and Fundamentals -- Introduction -- Fundamental Concepts in Parametric Inference -- II. Modern Nonparametric Statistical Methods -- Smooth Goodness of Fit Tests -- One-Sample and Two-Sample Problems -- Multi-Sample Problems -- Tests for Trend and Association -- Optimal Rank Tests -- Efficiency -- III. Selected Applications -- Multiple Change-Point Problems -- Bayesian Models for Ranking Data -- Analysis of Censored Data -- A. Description of Data Sets.
520
$a
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
650
0
$a
Nonparametric statistics.
$3
527779
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Statistical Theory and Methods.
$3
671396
700
1
$a
Yu, Philip L. H.
$3
1210566
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer series in the data sciences.
$3
1070509
856
4 0
$u
https://doi.org/10.1007/978-3-319-94153-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入