Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Learn RStudio IDE = quick, effective...
~
Campbell, Matthew.
Learn RStudio IDE = quick, effective, and productive data science /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Learn RStudio IDE/ by Matthew Campbell.
Reminder of title:
quick, effective, and productive data science /
Author:
Campbell, Matthew.
Published:
Berkeley, CA :Apress : : 2019.,
Description:
ix, 153 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Data mining. -
Online resource:
https://doi.org/10.1007/978-1-4842-4511-8
ISBN:
9781484245118
Learn RStudio IDE = quick, effective, and productive data science /
Campbell, Matthew.
Learn RStudio IDE
quick, effective, and productive data science /[electronic resource] :by Matthew Campbell. - Berkeley, CA :Apress :2019. - ix, 153 p. :ill., digital ;24 cm.
1. Installing RStudio -- 2. Hello World -- 3. RStudio Views -- 4. RStudio Projects -- 5. Repeatable Analysis -- 6. Essential R Packages: Tidyverse -- 7. Data Visualization -- 8. R Markdown -- 9. Shiny R Dashboards -- 10. Custom R Packages -- 11. Code Tools -- 12. R Programming.
Discover how to use the popular RStudio IDE as a professional tool that includes code refactoring support, debugging, and Git version control integration. This book gives you a tour of RStudio and shows you how it helps you do exploratory data analysis; build data visualizations with ggplot; and create custom R packages and web-based interactive visualizations with Shiny. In addition, you will cover common data analysis tasks including importing data from diverse sources such as SAS files, CSV files, and JSON. You will map out the features in RStudio so that you will be able to customize RStudio to fit your own style of coding. Finally, you will see how to save a ton of time by adopting best practices and using packages to extend RStudio. Learn RStudio IDE is a quick, no-nonsense tutorial of RStudio that will give you a head start to develop the insights you need in your data science projects. You will: Quickly, effectively, and productively use RStudio IDE for building data science applications Install RStudio and program your first Hello World application Adopt the RStudio workflow Make your code reusable using RStudio Use RStudio and Shiny for data visualization projects Debug your code with RStudio Import CSV, SPSS, SAS, JSON, and other data.
ISBN: 9781484245118
Standard No.: 10.1007/978-1-4842-4511-8doiSubjects--Topical Terms:
528622
Data mining.
LC Class. No.: QA76.9.D343 / C36 2019
Dewey Class. No.: 006.312
Learn RStudio IDE = quick, effective, and productive data science /
LDR
:02578nam a2200337 a 4500
001
939876
003
DE-He213
005
20190417151727.0
006
m d
007
cr nn 008maaau
008
200414s2019 cau s 0 eng d
020
$a
9781484245118
$q
(electronic bk.)
020
$a
9781484245101
$q
(paper)
024
7
$a
10.1007/978-1-4842-4511-8
$2
doi
035
$a
978-1-4842-4511-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
C36 2019
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
UMX
$2
thema
072
7
$a
UMC
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
C189 2019
100
1
$a
Campbell, Matthew.
$3
686646
245
1 0
$a
Learn RStudio IDE
$h
[electronic resource] :
$b
quick, effective, and productive data science /
$c
by Matthew Campbell.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
ix, 153 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Installing RStudio -- 2. Hello World -- 3. RStudio Views -- 4. RStudio Projects -- 5. Repeatable Analysis -- 6. Essential R Packages: Tidyverse -- 7. Data Visualization -- 8. R Markdown -- 9. Shiny R Dashboards -- 10. Custom R Packages -- 11. Code Tools -- 12. R Programming.
520
$a
Discover how to use the popular RStudio IDE as a professional tool that includes code refactoring support, debugging, and Git version control integration. This book gives you a tour of RStudio and shows you how it helps you do exploratory data analysis; build data visualizations with ggplot; and create custom R packages and web-based interactive visualizations with Shiny. In addition, you will cover common data analysis tasks including importing data from diverse sources such as SAS files, CSV files, and JSON. You will map out the features in RStudio so that you will be able to customize RStudio to fit your own style of coding. Finally, you will see how to save a ton of time by adopting best practices and using packages to extend RStudio. Learn RStudio IDE is a quick, no-nonsense tutorial of RStudio that will give you a head start to develop the insights you need in your data science projects. You will: Quickly, effectively, and productively use RStudio IDE for building data science applications Install RStudio and program your first Hello World application Adopt the RStudio workflow Make your code reusable using RStudio Use RStudio and Shiny for data visualization projects Debug your code with RStudio Import CSV, SPSS, SAS, JSON, and other data.
650
0
$a
Data mining.
$3
528622
650
1 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
650
2 4
$a
Programming Techniques.
$3
669781
650
2 4
$a
Data Engineering.
$3
1226308
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4511-8
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login