語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep reinforcement learning = fronti...
~
SpringerLink (Online service)
Deep reinforcement learning = frontiers of artificial intelligence /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep reinforcement learning/ by Mohit Sewak.
其他題名:
frontiers of artificial intelligence /
作者:
Sewak, Mohit.
出版者:
Singapore :Springer Singapore : : 2019.,
面頁冊數:
xvii, 203 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Reinforcement learning. -
電子資源:
https://doi.org/10.1007/978-981-13-8285-7
ISBN:
9789811382857
Deep reinforcement learning = frontiers of artificial intelligence /
Sewak, Mohit.
Deep reinforcement learning
frontiers of artificial intelligence /[electronic resource] :by Mohit Sewak. - Singapore :Springer Singapore :2019. - xvii, 203 p. :ill. (some col.), digital ;24 cm.
Introduction to Reinforcement Learning -- Mathematical and Algorithmic understanding of Reinforcement Learning -- Coding the Environment and MDP Solution -- Temporal Difference Learning, SARSA, and Q Learning -- Q Learning in Code -- Introduction to Deep Learning -- Implementation Resources -- Deep Q Network (DQN), Double DQN and Dueling DQN -- Double DQN in Code -- Policy-Based Reinforcement Learning Approaches -- Actor-Critic Models & the A3C -- A3C in Code -- Deterministic Policy Gradient and the DDPG -- DDPG in Code.
This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds - deep learning and reinforcement learning - to tap the potential of 'advanced artificial intelligence' for creating real-world applications and game-winning algorithms.
ISBN: 9789811382857
Standard No.: 10.1007/978-981-13-8285-7doiSubjects--Topical Terms:
815404
Reinforcement learning.
LC Class. No.: Q325.6 / .S49 2019
Dewey Class. No.: 005.11
Deep reinforcement learning = frontiers of artificial intelligence /
LDR
:02350nam a2200325 a 4500
001
941018
003
DE-He213
005
20190627193138.0
006
m d
007
cr nn 008maaau
008
200417s2019 si s 0 eng d
020
$a
9789811382857
$q
(electronic bk.)
020
$a
9789811382840
$q
(paper)
024
7
$a
10.1007/978-981-13-8285-7
$2
doi
035
$a
978-981-13-8285-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.6
$b
.S49 2019
072
7
$a
UM
$2
bicssc
072
7
$a
COM051000
$2
bisacsh
072
7
$a
UM
$2
thema
082
0 4
$a
005.11
$2
23
090
$a
Q325.6
$b
.S512 2019
100
1
$a
Sewak, Mohit.
$3
1228010
245
1 0
$a
Deep reinforcement learning
$h
[electronic resource] :
$b
frontiers of artificial intelligence /
$c
by Mohit Sewak.
260
$a
Singapore :
$c
2019.
$b
Springer Singapore :
$b
Imprint: Springer,
300
$a
xvii, 203 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction to Reinforcement Learning -- Mathematical and Algorithmic understanding of Reinforcement Learning -- Coding the Environment and MDP Solution -- Temporal Difference Learning, SARSA, and Q Learning -- Q Learning in Code -- Introduction to Deep Learning -- Implementation Resources -- Deep Q Network (DQN), Double DQN and Dueling DQN -- Double DQN in Code -- Policy-Based Reinforcement Learning Approaches -- Actor-Critic Models & the A3C -- A3C in Code -- Deterministic Policy Gradient and the DDPG -- DDPG in Code.
520
$a
This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds - deep learning and reinforcement learning - to tap the potential of 'advanced artificial intelligence' for creating real-world applications and game-winning algorithms.
650
0
$a
Reinforcement learning.
$3
815404
650
1 4
$a
Programming Techniques.
$3
669781
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
593923
650
2 4
$a
Cryptology.
$3
1211076
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-8285-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入