語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Moduli of K-stable varieties
~
Dervan, Ruadhai.
Moduli of K-stable varieties
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Moduli of K-stable varieties/ edited by Giulio Codogni, Ruadhai Dervan, Filippo Viviani.
其他作者:
Codogni, Giulio.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
xiii, 181 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Geometry, Algebraic - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-030-13158-6
ISBN:
9783030131586
Moduli of K-stable varieties
Moduli of K-stable varieties
[electronic resource] /edited by Giulio Codogni, Ruadhai Dervan, Filippo Viviani. - Cham :Springer International Publishing :2019. - xiii, 181 p. :ill., digital ;24 cm. - Springer INdAM series,v.312281-518X ;. - Springer INdAM series ;v.6..
1 F. Ambro and J. Kollar, Minimal Models of semi-log-canonical pairs -- 2 G. Codogni and J. Stoppa, Torus Equivariant K-stability -- 3 K. Fujita, Notes on K-semistability of topic polarized surfaces -- 4 E. Legendre, A note on extremal toric almost Kahler metrics -- 5 Y. Odaka, Tropical geometric compactification of moduli, I - M_g case -- 6 Z. Sjostrom Dyrefelt, A partial comparison of stability notions in Kahler geometry -- 7 C. Spotti, Kahler-Einstein metrics via moduli continuity -- 8 X. Wang, GIT stability, K-stability and moduli space of Fano varieties.
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kahler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kahler and almost-Kahler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kahler-Einstein metrics.
ISBN: 9783030131586
Standard No.: 10.1007/978-3-030-13158-6doiSubjects--Topical Terms:
665372
Geometry, Algebraic
--Congresses.
LC Class. No.: QA564 / .M63 2019
Dewey Class. No.: 516.35
Moduli of K-stable varieties
LDR
:02708nam a2200337 a 4500
001
941353
003
DE-He213
005
20190627143304.0
006
m d
007
cr nn 008maaau
008
200417s2019 gw s 0 eng d
020
$a
9783030131586
$q
(electronic bk.)
020
$a
9783030131579
$q
(paper)
024
7
$a
10.1007/978-3-030-13158-6
$2
doi
035
$a
978-3-030-13158-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA564
$b
.M63 2019
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
090
$a
QA564
$b
.M692 2019
245
0 0
$a
Moduli of K-stable varieties
$h
[electronic resource] /
$c
edited by Giulio Codogni, Ruadhai Dervan, Filippo Viviani.
260
$a
Cham :
$c
2019.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiii, 181 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer INdAM series,
$x
2281-518X ;
$v
v.31
505
0
$a
1 F. Ambro and J. Kollar, Minimal Models of semi-log-canonical pairs -- 2 G. Codogni and J. Stoppa, Torus Equivariant K-stability -- 3 K. Fujita, Notes on K-semistability of topic polarized surfaces -- 4 E. Legendre, A note on extremal toric almost Kahler metrics -- 5 Y. Odaka, Tropical geometric compactification of moduli, I - M_g case -- 6 Z. Sjostrom Dyrefelt, A partial comparison of stability notions in Kahler geometry -- 7 C. Spotti, Kahler-Einstein metrics via moduli continuity -- 8 X. Wang, GIT stability, K-stability and moduli space of Fano varieties.
520
$a
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kahler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kahler and almost-Kahler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kahler-Einstein metrics.
650
0
$a
Geometry, Algebraic
$v
Congresses.
$3
665372
$3
727804
650
1 4
$a
Algebraic Geometry.
$3
670184
650
2 4
$a
Geometry.
$3
579899
650
2 4
$a
Several Complex Variables and Analytic Spaces.
$3
672032
700
1
$a
Codogni, Giulio.
$3
1228523
700
1
$a
Dervan, Ruadhai.
$3
1228524
700
1
$a
Viviani, Filippo.
$3
1228525
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer INdAM series ;
$v
v.6.
$3
1025170
856
4 0
$u
https://doi.org/10.1007/978-3-030-13158-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入