語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multidimensional periodic Schrodinge...
~
Veliev, Oktay.
Multidimensional periodic Schrodinger operator = perturbation theory and applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multidimensional periodic Schrodinger operator/ by Oktay Veliev.
其他題名:
perturbation theory and applications /
作者:
Veliev, Oktay.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
xii, 326 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Schrodinger operator. -
電子資源:
https://doi.org/10.1007/978-3-030-24578-8
ISBN:
9783030245788
Multidimensional periodic Schrodinger operator = perturbation theory and applications /
Veliev, Oktay.
Multidimensional periodic Schrodinger operator
perturbation theory and applications /[electronic resource] :by Oktay Veliev. - 2nd ed. - Cham :Springer International Publishing :2019. - xii, 326 p. :ill., digital ;24 cm.
Chapter 1 - Preliminary Facts -- Chapter 2- From One-dimensional to Multidimensional -- Chapter 3 - Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.-Chapter 4 -Constructive Determination of the Spectral Invariants -- Chapter 5 - Periodic Potential from the Spectral Invariants -- Chapter 6 - Conclusions.
This book describes the direct and inverse problems of the multidimensional Schrodinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas for Bloch eigenvalues and Bloch functions in arbitrary dimensions while constructing and estimating the measure of the iso-energetic surfaces in the high-energy regime. Moreover, it presents a unique method proving the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed, it determines the spectral invariants of the multidimensional operator from the given Bloch eigenvalues. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential, making it possible to determine the potential constructively using Bloch eigenvalues as input data. Lastly, the book presents an algorithm for the unique determination of the potential. This updated second edition includes an additional chapter that specifically focuses on lower-dimensional cases, providing the basis for the higher-dimensional considerations of the chapters that follow.
ISBN: 9783030245788
Standard No.: 10.1007/978-3-030-24578-8doiSubjects--Topical Terms:
678114
Schrodinger operator.
LC Class. No.: QC174.17.S3 / V455 2019
Dewey Class. No.: 530.124
Multidimensional periodic Schrodinger operator = perturbation theory and applications /
LDR
:02660nam a2200337 a 4500
001
942129
003
DE-He213
005
20191213105807.0
006
m d
007
cr nn 008maaau
008
200417s2019 gw s 0 eng d
020
$a
9783030245788
$q
(electronic bk.)
020
$a
9783030245771
$q
(paper)
024
7
$a
10.1007/978-3-030-24578-8
$2
doi
035
$a
978-3-030-24578-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.17.S3
$b
V455 2019
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
530.124
$2
23
090
$a
QC174.17.S3
$b
V437 2019
100
1
$a
Veliev, Oktay.
$3
1229773
245
1 0
$a
Multidimensional periodic Schrodinger operator
$h
[electronic resource] :
$b
perturbation theory and applications /
$c
by Oktay Veliev.
250
$a
2nd ed.
260
$a
Cham :
$c
2019.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xii, 326 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1 - Preliminary Facts -- Chapter 2- From One-dimensional to Multidimensional -- Chapter 3 - Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.-Chapter 4 -Constructive Determination of the Spectral Invariants -- Chapter 5 - Periodic Potential from the Spectral Invariants -- Chapter 6 - Conclusions.
520
$a
This book describes the direct and inverse problems of the multidimensional Schrodinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas for Bloch eigenvalues and Bloch functions in arbitrary dimensions while constructing and estimating the measure of the iso-energetic surfaces in the high-energy regime. Moreover, it presents a unique method proving the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed, it determines the spectral invariants of the multidimensional operator from the given Bloch eigenvalues. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential, making it possible to determine the potential constructively using Bloch eigenvalues as input data. Lastly, the book presents an algorithm for the unique determination of the potential. This updated second edition includes an additional chapter that specifically focuses on lower-dimensional cases, providing the basis for the higher-dimensional considerations of the chapters that follow.
650
0
$a
Schrodinger operator.
$3
678114
650
0
$a
Perturbation (Mathematics)
$3
528258
650
0
$a
Spectral theory (Mathematics)
$3
527757
650
1 4
$a
Quantum Physics.
$3
671960
650
2 4
$a
Solid State Physics.
$3
768851
650
2 4
$a
Mathematical Physics.
$3
786661
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-24578-8
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入