語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hybrid Single Shot Manufacturing of ...
~
Clemson University.
Hybrid Single Shot Manufacturing of Multi-Materials Structure for Automotive Applications.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Hybrid Single Shot Manufacturing of Multi-Materials Structure for Automotive Applications./
作者:
Kazan, Hakan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
111 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Contained By:
Dissertations Abstracts International81-04B.
標題:
Automotive engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=22582867
ISBN:
9781088321225
Hybrid Single Shot Manufacturing of Multi-Materials Structure for Automotive Applications.
Kazan, Hakan.
Hybrid Single Shot Manufacturing of Multi-Materials Structure for Automotive Applications.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 111 p.
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Thesis (Ph.D.)--Clemson University, 2019.
This item must not be sold to any third party vendors.
Multi-material design is one of the most attractive methods for automakers to reduce production cost while achieving lightweighting to meet stringent regulations and fuel efficiency concerns. Lightweighting, parts consolidation, reduction in assembly time and cost, and diverse functionalities are some advantages to the use of multi-material design in the automotive industry. However, the current technology of multi-material manufacturing faces some drawbacks, such as high cycle time, the necessity of various tooling and machinery systems, tight tolerance requirements, and extended planning effort on the production line. In this study, a technique named the Hybrid Single Shot (HSS), which is similar to Polymer Injection Forming (PIF), is used to manufacture CF/Epoxy-Thermoplastic components in a single operation. Unlike the PIF method, a carbon fiber /epoxy prepreg sheet is used as an insert material instead of sheet metal. In this technique, an injected polymer melt behaves like a forming medium to form the inserted thermoset sheet, in a single operation. Molten polymer not only forms but also bonds with the thermoset sheet using the high temperature of the polymer, in one process. CF/Epoxy sheet with injected thermoplastic is a hybrid structure that combines high mechanical properties of thermoset composite with the toughness and complex geometries of injected thermoplastic into a single component. A feasibility study was conducted for developing an integrated technology for the manufacturing of thermoset CF/Epoxy prepreg sheet with an injection of polypropylene to overcome the high cycle time and production cost associated with the manufacturing of such hybrids. Several sample parts were manufactured to demonstrate the effect of the process parameters on the process performance and the appearance of the final hybrid component. Although the results were promising, it showed some practical challenges such as excessive penetration, inadequate deformation, and warpage. Various process and design parameters are applied to the hybrid single shot process to circumvent these challenges. For example, a lower injection speed rate and the injection temperature are applied to increase the viscosity to prevent the penetration of polymeric melt through the thermoset sheet. Also, to evaluate the impact of polymer injection on the degree of cure of the prepreg sheet, Differential Scanning Calorimetry (DSC) analysis is conducted at a different pre-heat time before and after injection. The results showed that an increase in pre-heating time and injection temperature significantly enhanced the curing of the prepreg sheet after injection. Further, the mechanical properties of the hybrid part will be examined to identify the effect of individual properties of CF/ Epoxy and PP on the final component. Another contribution of this study is that it avoids many difficulties that conventional TS/TP joining techniques face. Specifically, these traditional joining methods, namely mechanical fastening, adhesive bonding, and welding, are time-consuming and labor-intensive. Also, mechanical fastening causes delamination and possible galvanic corrosion while adhesive bonding requires extensive surface preparation. Despite the time and weight advantages, welding techniques tend to create local delamination due to high local temperature. The hybrid single shot method is a promising alternative to overcome all the challenges that conventional methods face. A lap shear test is conducted to address the bonding conditions between polypropylene and CF/Epoxy prepreg. The experimental results presented in the previous chapters have revealed that the final geometry of the hybrid part is highly dependent on the preheating conditions and pressure field applied on the prepreg sheet during the injection phase. The pressure distribution is then a function of selected polymer, process settings, and most importantly of the geometry of the flow channel. To model the forming of the prepreg sheet due to this non-uniform pressure field, it is essential to couple all the physical events occurring inside the cavity. Therefore, the last contribution of this study is to have a better understanding on the effect of interaction injection, forming and curing on the final geometry of prepreg sheet, a quick yet accurate simulation of the HSS process. This simulation includes the consideration of the non-uniform pressure distribution of the melt flow and the prepreg sheet deformation behavior based on a new experimentally calibrated numerical approach.
ISBN: 9781088321225Subjects--Topical Terms:
1104081
Automotive engineering.
Subjects--Index Terms:
Hybrid single shot
Hybrid Single Shot Manufacturing of Multi-Materials Structure for Automotive Applications.
LDR
:05687nam a2200337 4500
001
951847
005
20200821052208.5
008
200914s2019 ||||||||||||||||| ||eng d
020
$a
9781088321225
035
$a
(MiAaPQ)AAI22582867
035
$a
AAI22582867
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kazan, Hakan.
$3
1241337
245
1 0
$a
Hybrid Single Shot Manufacturing of Multi-Materials Structure for Automotive Applications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
111 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500
$a
Advisor: Pilla, Srikanth.
502
$a
Thesis (Ph.D.)--Clemson University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Multi-material design is one of the most attractive methods for automakers to reduce production cost while achieving lightweighting to meet stringent regulations and fuel efficiency concerns. Lightweighting, parts consolidation, reduction in assembly time and cost, and diverse functionalities are some advantages to the use of multi-material design in the automotive industry. However, the current technology of multi-material manufacturing faces some drawbacks, such as high cycle time, the necessity of various tooling and machinery systems, tight tolerance requirements, and extended planning effort on the production line. In this study, a technique named the Hybrid Single Shot (HSS), which is similar to Polymer Injection Forming (PIF), is used to manufacture CF/Epoxy-Thermoplastic components in a single operation. Unlike the PIF method, a carbon fiber /epoxy prepreg sheet is used as an insert material instead of sheet metal. In this technique, an injected polymer melt behaves like a forming medium to form the inserted thermoset sheet, in a single operation. Molten polymer not only forms but also bonds with the thermoset sheet using the high temperature of the polymer, in one process. CF/Epoxy sheet with injected thermoplastic is a hybrid structure that combines high mechanical properties of thermoset composite with the toughness and complex geometries of injected thermoplastic into a single component. A feasibility study was conducted for developing an integrated technology for the manufacturing of thermoset CF/Epoxy prepreg sheet with an injection of polypropylene to overcome the high cycle time and production cost associated with the manufacturing of such hybrids. Several sample parts were manufactured to demonstrate the effect of the process parameters on the process performance and the appearance of the final hybrid component. Although the results were promising, it showed some practical challenges such as excessive penetration, inadequate deformation, and warpage. Various process and design parameters are applied to the hybrid single shot process to circumvent these challenges. For example, a lower injection speed rate and the injection temperature are applied to increase the viscosity to prevent the penetration of polymeric melt through the thermoset sheet. Also, to evaluate the impact of polymer injection on the degree of cure of the prepreg sheet, Differential Scanning Calorimetry (DSC) analysis is conducted at a different pre-heat time before and after injection. The results showed that an increase in pre-heating time and injection temperature significantly enhanced the curing of the prepreg sheet after injection. Further, the mechanical properties of the hybrid part will be examined to identify the effect of individual properties of CF/ Epoxy and PP on the final component. Another contribution of this study is that it avoids many difficulties that conventional TS/TP joining techniques face. Specifically, these traditional joining methods, namely mechanical fastening, adhesive bonding, and welding, are time-consuming and labor-intensive. Also, mechanical fastening causes delamination and possible galvanic corrosion while adhesive bonding requires extensive surface preparation. Despite the time and weight advantages, welding techniques tend to create local delamination due to high local temperature. The hybrid single shot method is a promising alternative to overcome all the challenges that conventional methods face. A lap shear test is conducted to address the bonding conditions between polypropylene and CF/Epoxy prepreg. The experimental results presented in the previous chapters have revealed that the final geometry of the hybrid part is highly dependent on the preheating conditions and pressure field applied on the prepreg sheet during the injection phase. The pressure distribution is then a function of selected polymer, process settings, and most importantly of the geometry of the flow channel. To model the forming of the prepreg sheet due to this non-uniform pressure field, it is essential to couple all the physical events occurring inside the cavity. Therefore, the last contribution of this study is to have a better understanding on the effect of interaction injection, forming and curing on the final geometry of prepreg sheet, a quick yet accurate simulation of the HSS process. This simulation includes the consideration of the non-uniform pressure distribution of the melt flow and the prepreg sheet deformation behavior based on a new experimentally calibrated numerical approach.
590
$a
School code: 0050.
650
4
$a
Automotive engineering.
$3
1104081
653
$a
Hybrid single shot
653
$a
Prepreg deformation
653
$a
Thermoplastic injection
653
$a
Thermoset forming
690
$a
0540
710
2
$a
Clemson University.
$b
Automotive Engineering.
$3
1148573
773
0
$t
Dissertations Abstracts International
$g
81-04B.
790
$a
0050
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=22582867
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入