語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Reconfigurable Optically Interconnec...
~
Columbia University.
Reconfigurable Optically Interconnected Systems.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Reconfigurable Optically Interconnected Systems./
作者:
Shen, Yiwen.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
141 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-09, Section: B.
Contained By:
Dissertations Abstracts International81-09B.
標題:
Engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27739745
ISBN:
9781392554517
Reconfigurable Optically Interconnected Systems.
Shen, Yiwen.
Reconfigurable Optically Interconnected Systems.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 141 p.
Source: Dissertations Abstracts International, Volume: 81-09, Section: B.
Thesis (Ph.D.)--Columbia University, 2020.
This item must not be sold to any third party vendors.
With the immense growth of data consumption in today's data centers and high-performance computing systems driven by the constant influx of new applications, the network infrastructure supporting this demand is under increasing pressure to enable higher bandwidth, latency, and flexibility requirements. Optical interconnects, able to support high bandwidth wavelength division multiplexed signals with extreme energy efficiency, have become the basis for long-haul and metro-scale networks around the world, while photonic components are being rapidly integrated within rack and chip-scale systems. However, optical and photonic interconnects are not a direct replacement for electronic-based components. Rather, the integration of optical interconnects with electronic peripherals allows for unique functionalities that can improve the capacity, compute performance and flexibility of current state-of-the-art computing systems. This requires physical layer methodologies for their integration with electronic components, as well as system level control planes that incorporates the optical layer characteristics. This thesis explores various network architectures and the associated control plane, hardware infrastructure, and other supporting software modules needed to integrate silicon photonics and MEMS based optical switching into conventional datacom network systems ranging from intra-data center and high-performance computing systems to the metro-scale layer networks between data centers. In each of these systems, we demonstrate dynamic bandwidth steering and compute resource allocation capabilities to enable significant performance improvements. The key accomplishments of this thesis are as follows. In Part 1, we present high-performance computing network architectures that integrate silicon photonic switches for optical bandwidth steering, enabling multiple reconfigurable topologies that results in significant system performance improvements. As high-performance systems rely on increased parallelism by scaling up to greater numbers of processor nodes, communication between these nodes grows rapidly and the interconnection network becomes a bottleneck to the overall performance of the system. It has been observed that many scientific applications operating on high-performance computing systems cause highly skewed traffic over the network, congesting only a small percentage of the total available links while other links are underutilized. This mismatch of the traffic and the bandwidth allocation of the physical layer network presents the opportunity to optimize the bandwidth resource utilization of the system by using silicon photonic switches to perform bandwidth steering. This allows the individual processors to perform at their maximum compute potential and thereby improving the overall system performance. We show various testbeds that integrates both microring resonator and Mach-Zehnder based silicon photonic switches within Dragonfly and Fat-Tree topology networks built with conventional equipment, and demonstrate 30-60\\% reduction in execution time of real high-performance benchmark applications. Part 2 presents a flexible network architecture and control plane that enables autonomous bandwidth steering and IT resource provisioning capabilities between metro-scale geographically distributed data centers. It uses a software-defined control plane to autonomously provision both network and IT resources to support different quality of service requirements and optimizes resource utilization under dynamically changing load variations. By actively monitoring both the bandwidth utilization of the network and CPU or memory resources of the end hosts, the control plane autonomously provisions background or dynamic connections with different levels of quality of service using optical MEMS switching, as well as initializing live migrations of virtual machines to consolidate or distribute workload. Together these functionalities provide flexibility and maximize efficiency in processing and transferring data, and enables energy and cost savings by scaling down the system when resources are not needed. An experimental testbed of three data center nodes was built to demonstrate the feasibility of these capabilities.Part 3 presents Lightbridge, a communications platform specifically designed to provide a more seamless integration between processor nodes and an optically switched network. It addresses some of the crucial issues faced by the works presented in the previous chapters related to optical switching. When optical switches perform switching operations, they change the physical topology of the network, and they lack the capability to buffer packets, resulting in certain optical circuits being unavailable. This prompts the question of whether it is safe to transmit packets by end hosts at any given time. Lightbridge was developed to coordinate switching and routing of optical circuits across the network, by having the processors gain information about the current state of the optical network before transmitting packets, and being able to buffer packets when the optical circuit is not available. This part describes details of Lightbridge which is constituted by a loadable Linux kernel module along with other supporting modifications to the Linux kernel in order to achieve the necessary functionalities.
ISBN: 9781392554517Subjects--Topical Terms:
561152
Engineering.
Subjects--Index Terms:
Data centers
Reconfigurable Optically Interconnected Systems.
LDR
:06545nam a2200385 4500
001
951897
005
20200821052222.5
008
200914s2020 ||||||||||||||||| ||eng d
020
$a
9781392554517
035
$a
(MiAaPQ)AAI27739745
035
$a
AAI27739745
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Shen, Yiwen.
$3
1241394
245
1 0
$a
Reconfigurable Optically Interconnected Systems.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
141 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-09, Section: B.
500
$a
Advisor: Bergman, Keren.
502
$a
Thesis (Ph.D.)--Columbia University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
With the immense growth of data consumption in today's data centers and high-performance computing systems driven by the constant influx of new applications, the network infrastructure supporting this demand is under increasing pressure to enable higher bandwidth, latency, and flexibility requirements. Optical interconnects, able to support high bandwidth wavelength division multiplexed signals with extreme energy efficiency, have become the basis for long-haul and metro-scale networks around the world, while photonic components are being rapidly integrated within rack and chip-scale systems. However, optical and photonic interconnects are not a direct replacement for electronic-based components. Rather, the integration of optical interconnects with electronic peripherals allows for unique functionalities that can improve the capacity, compute performance and flexibility of current state-of-the-art computing systems. This requires physical layer methodologies for their integration with electronic components, as well as system level control planes that incorporates the optical layer characteristics. This thesis explores various network architectures and the associated control plane, hardware infrastructure, and other supporting software modules needed to integrate silicon photonics and MEMS based optical switching into conventional datacom network systems ranging from intra-data center and high-performance computing systems to the metro-scale layer networks between data centers. In each of these systems, we demonstrate dynamic bandwidth steering and compute resource allocation capabilities to enable significant performance improvements. The key accomplishments of this thesis are as follows. In Part 1, we present high-performance computing network architectures that integrate silicon photonic switches for optical bandwidth steering, enabling multiple reconfigurable topologies that results in significant system performance improvements. As high-performance systems rely on increased parallelism by scaling up to greater numbers of processor nodes, communication between these nodes grows rapidly and the interconnection network becomes a bottleneck to the overall performance of the system. It has been observed that many scientific applications operating on high-performance computing systems cause highly skewed traffic over the network, congesting only a small percentage of the total available links while other links are underutilized. This mismatch of the traffic and the bandwidth allocation of the physical layer network presents the opportunity to optimize the bandwidth resource utilization of the system by using silicon photonic switches to perform bandwidth steering. This allows the individual processors to perform at their maximum compute potential and thereby improving the overall system performance. We show various testbeds that integrates both microring resonator and Mach-Zehnder based silicon photonic switches within Dragonfly and Fat-Tree topology networks built with conventional equipment, and demonstrate 30-60\\% reduction in execution time of real high-performance benchmark applications. Part 2 presents a flexible network architecture and control plane that enables autonomous bandwidth steering and IT resource provisioning capabilities between metro-scale geographically distributed data centers. It uses a software-defined control plane to autonomously provision both network and IT resources to support different quality of service requirements and optimizes resource utilization under dynamically changing load variations. By actively monitoring both the bandwidth utilization of the network and CPU or memory resources of the end hosts, the control plane autonomously provisions background or dynamic connections with different levels of quality of service using optical MEMS switching, as well as initializing live migrations of virtual machines to consolidate or distribute workload. Together these functionalities provide flexibility and maximize efficiency in processing and transferring data, and enables energy and cost savings by scaling down the system when resources are not needed. An experimental testbed of three data center nodes was built to demonstrate the feasibility of these capabilities.Part 3 presents Lightbridge, a communications platform specifically designed to provide a more seamless integration between processor nodes and an optically switched network. It addresses some of the crucial issues faced by the works presented in the previous chapters related to optical switching. When optical switches perform switching operations, they change the physical topology of the network, and they lack the capability to buffer packets, resulting in certain optical circuits being unavailable. This prompts the question of whether it is safe to transmit packets by end hosts at any given time. Lightbridge was developed to coordinate switching and routing of optical circuits across the network, by having the processors gain information about the current state of the optical network before transmitting packets, and being able to buffer packets when the optical circuit is not available. This part describes details of Lightbridge which is constituted by a loadable Linux kernel module along with other supporting modifications to the Linux kernel in order to achieve the necessary functionalities.
590
$a
School code: 0054.
650
4
$a
Engineering.
$3
561152
650
4
$a
Information technology.
$3
559429
650
4
$a
Computer science.
$3
573171
653
$a
Data centers
653
$a
High performance computing
653
$a
Networks
653
$a
Optics
653
$a
Photonics
653
$a
Software-defined networking
690
$a
0537
690
$a
0489
690
$a
0984
710
2
$a
Columbia University.
$b
Electrical Engineering.
$3
1179181
773
0
$t
Dissertations Abstracts International
$g
81-09B.
790
$a
0054
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27739745
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入