語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Simulation based engineering in soli...
~
Rao, J.S.
Simulation based engineering in solid mechanics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Simulation based engineering in solid mechanics/ by J.S. Rao.
作者:
Rao, J.S.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xiv, 200 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Mechanics. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-47614-8
ISBN:
9783319476148
Simulation based engineering in solid mechanics
Rao, J.S.
Simulation based engineering in solid mechanics
[electronic resource] /by J.S. Rao. - Cham :Springer International Publishing :2017. - xiv, 200 p. :ill., digital ;24 cm.
Preface -- Introduction -- 1.1 Matrices -- 1.2 Vectors and Tensors -- 1.3 Energy Principle -- 2 Continuous Solid -- 2.1 External and Internal Tractions -- 2.2. Stress Definition -- 2.3. Equilibrium Relations -- 2.4. Strain -- 2.5. Stress -- Strain Relations -- 2.6 Strain Energy and Work -- 2.7 Von Mises Stress -- 3 Euler-Lagrange Equations -- 3.1 General Approach for solving Structural Problems -- 3.2 Other Applications of Euler-Lagrange Equation leading to Optimization -- 3.3 Derivation of Euler-Lagrange Equation through Delta Operator -- 4 Axially Loaded 1-D Structures -- 4.1 Simply Supported Bar -- 4.2 Simply Supported - Free Bar -- 4.3 Finite Element Method -- 4.4 Thermal Stresses -- 4.5 Principle of Virtual Work4.6 Minimization of Total Potential Energy -- 5 Twisting of a Rod -- 5.1 Finite Element Method for Torsion -- 5.2 Two Elements and Stiffness Matrix Assembly -- 5.3 Ritz Method for Torsion -- 6 Bending of a Beam -- 6.1 Bending by Energy Method -- 6.2 Beam with Axial Load (Beam-Column) -- 6.3 Strength of Materials Approach -- 6.4 Beam Solution by Energy Method -- 6.5 Beam Finite Element -- 6.6 Buckling revisited -- 6.7 Galerkin Method for Tapered Beams -- 6.8 General Structures by Commercial Solvers -- 7. Epilogue -- Acknowledgements -- Index.
This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtained. The finite element method most suitable for HPC is derived and the corresponding stiffness matrix for the element is derived. Assembling procedure of these matrices is then described to obtain the system matrices. Worked examples and exercises are given in each chapter. This book brings SBES at entry level allowing young students to quickly adapt to modern design practices.
ISBN: 9783319476148
Standard No.: 10.1007/978-3-319-47614-8doiSubjects--Topical Terms:
527684
Mechanics.
LC Class. No.: QA805
Dewey Class. No.: 531.3
Simulation based engineering in solid mechanics
LDR
:03614nam a2200325 a 4500
001
957263
003
DE-He213
005
20170614132241.0
006
m d
007
cr nn 008maaau
008
201118s2017 gw s 0 eng d
020
$a
9783319476148
$q
(electronic bk.)
020
$a
9783319476131
$q
(paper)
024
7
$a
10.1007/978-3-319-47614-8
$2
doi
035
$a
978-3-319-47614-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA805
072
7
$a
TG
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TEC021000
$2
bisacsh
082
0 4
$a
531.3
$2
23
090
$a
QA805
$b
.R215 2017
100
1
$a
Rao, J.S.
$3
785325
245
1 0
$a
Simulation based engineering in solid mechanics
$h
[electronic resource] /
$c
by J.S. Rao.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiv, 200 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Preface -- Introduction -- 1.1 Matrices -- 1.2 Vectors and Tensors -- 1.3 Energy Principle -- 2 Continuous Solid -- 2.1 External and Internal Tractions -- 2.2. Stress Definition -- 2.3. Equilibrium Relations -- 2.4. Strain -- 2.5. Stress -- Strain Relations -- 2.6 Strain Energy and Work -- 2.7 Von Mises Stress -- 3 Euler-Lagrange Equations -- 3.1 General Approach for solving Structural Problems -- 3.2 Other Applications of Euler-Lagrange Equation leading to Optimization -- 3.3 Derivation of Euler-Lagrange Equation through Delta Operator -- 4 Axially Loaded 1-D Structures -- 4.1 Simply Supported Bar -- 4.2 Simply Supported - Free Bar -- 4.3 Finite Element Method -- 4.4 Thermal Stresses -- 4.5 Principle of Virtual Work4.6 Minimization of Total Potential Energy -- 5 Twisting of a Rod -- 5.1 Finite Element Method for Torsion -- 5.2 Two Elements and Stiffness Matrix Assembly -- 5.3 Ritz Method for Torsion -- 6 Bending of a Beam -- 6.1 Bending by Energy Method -- 6.2 Beam with Axial Load (Beam-Column) -- 6.3 Strength of Materials Approach -- 6.4 Beam Solution by Energy Method -- 6.5 Beam Finite Element -- 6.6 Buckling revisited -- 6.7 Galerkin Method for Tapered Beams -- 6.8 General Structures by Commercial Solvers -- 7. Epilogue -- Acknowledgements -- Index.
520
$a
This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtained. The finite element method most suitable for HPC is derived and the corresponding stiffness matrix for the element is derived. Assembling procedure of these matrices is then described to obtain the system matrices. Worked examples and exercises are given in each chapter. This book brings SBES at entry level allowing young students to quickly adapt to modern design practices.
650
0
$a
Mechanics.
$3
527684
650
1 4
$a
Engineering.
$3
561152
650
2 4
$a
Continuum Mechanics and Mechanics of Materials.
$3
670886
650
2 4
$a
Classical Mechanics.
$3
1140387
650
2 4
$a
Engineering Design.
$3
670857
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-47614-8
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入