語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A combinatorial perspective on quant...
~
Yeats, Karen.
A combinatorial perspective on quantum field theory
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
A combinatorial perspective on quantum field theory/ by Karen Yeats.
作者:
Yeats, Karen.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
ix, 120 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Quantum field theory. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-47551-6
ISBN:
9783319475516
A combinatorial perspective on quantum field theory
Yeats, Karen.
A combinatorial perspective on quantum field theory
[electronic resource] /by Karen Yeats. - Cham :Springer International Publishing :2017. - ix, 120 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.152197-1757 ;. - SpringerBriefs in mathematical physics ;v.2..
Part I Preliminaries -- Introduction -- Quantum field theory set up -- Combinatorial classes and rooted trees -- The Connes-Kreimer Hopf algebra -- Feynman graphs -- Part II Dyson-Schwinger equations -- Introduction to Dyson-Schwinger equations -- Sub-Hopf algebras from Dyson-Schwinger equations -- Tree factorial and leading log toys -- Chord diagram expansions -- Differential equations and the (next-to)m leading log expansion -- Part III Feynman periods -- Feynman integrals and Feynman periods -- Period preserving graph symmetries -- An invariant with these symmetries -- Weight -- The c2 invariant -- Combinatorial aspects of some integration algorithms -- Index.
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author's biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
ISBN: 9783319475516
Standard No.: 10.1007/978-3-319-47551-6doiSubjects--Topical Terms:
579915
Quantum field theory.
LC Class. No.: QC174.45
Dewey Class. No.: 530.143
A combinatorial perspective on quantum field theory
LDR
:02529nam a2200325 a 4500
001
957472
003
DE-He213
005
20161125172108.0
006
m d
007
cr nn 008maaau
008
201118s2017 gw s 0 eng d
020
$a
9783319475516
$q
(electronic bk.)
020
$a
9783319475509
$q
(paper)
024
7
$a
10.1007/978-3-319-47551-6
$2
doi
035
$a
978-3-319-47551-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.45
072
7
$a
PHS
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
530.143
$2
23
090
$a
QC174.45
$b
.Y41 2017
100
1
$a
Yeats, Karen.
$3
1249066
245
1 2
$a
A combinatorial perspective on quantum field theory
$h
[electronic resource] /
$c
by Karen Yeats.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
ix, 120 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.15
505
0
$a
Part I Preliminaries -- Introduction -- Quantum field theory set up -- Combinatorial classes and rooted trees -- The Connes-Kreimer Hopf algebra -- Feynman graphs -- Part II Dyson-Schwinger equations -- Introduction to Dyson-Schwinger equations -- Sub-Hopf algebras from Dyson-Schwinger equations -- Tree factorial and leading log toys -- Chord diagram expansions -- Differential equations and the (next-to)m leading log expansion -- Part III Feynman periods -- Feynman integrals and Feynman periods -- Period preserving graph symmetries -- An invariant with these symmetries -- Weight -- The c2 invariant -- Combinatorial aspects of some integration algorithms -- Index.
520
$a
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author's biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
650
0
$a
Quantum field theory.
$3
579915
650
1 4
$a
Physics.
$3
564049
650
2 4
$a
Quantum Field Theories, String Theory.
$3
768973
650
2 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Discrete Mathematics.
$3
796600
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.2.
$3
1062983
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-47551-6
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入