語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical analysis of proteomics, ...
~
Datta, Susmita.
Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry/ edited by Susmita Datta, Bart J. A. Mertens.
其他作者:
Datta, Susmita.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
viii, 295 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Mass spectrometry. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-45809-0
ISBN:
9783319458090
Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry
Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry
[electronic resource] /edited by Susmita Datta, Bart J. A. Mertens. - Cham :Springer International Publishing :2017. - viii, 295 p. :ill., digital ;24 cm. - Frontiers in probability and the statistical sciences. - Frontiers in probability and the statistical sciences..
Transformation, normalization and batch effect in the analysis of mass spectrometry data for omics studies -- Automated Alignment of Mass Spectrometry Data Using Functional Geometry -- The analysis of peptide-centric mass spectrometry data utilizing information about the expected isotope distribution -- Probabilistic and likelihood-based methods for protein identification from MS/MS data -- An MCMC-MRF Algorithm for Incorporating Spatial Information in IMS Data Processing -- Mass Spectrometry Analysis Using MALDIquant -- Model-based analysis of quantitative proteomics data with data independent acquisition mass spectrometry -- The analysis of human serum albumin proteoforms using compositional framework -- Variability Assessment of Label-Free LC-MS Experiments for Difference Detection -- Statistical approach for biomarker discovery using label-free LC-MS data - an overview -- Bayesian posterior integration for classification of mass spectrometry data -- Logistic regression modeling on mass spectrometry data in proteomics case-control discriminant studies -- Robust and confident predictor selection in metabolomics -- On the combination of omics data for prediction of binary Outcomes -- Statistical analysis of lipidomics data in a case-control study.
ISBN: 9783319458090
Standard No.: 10.1007/978-3-319-45809-0doiSubjects--Topical Terms:
583253
Mass spectrometry.
LC Class. No.: QP519.9.M3
Dewey Class. No.: 543.65
Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry
LDR
:02356nam a2200325 a 4500
001
957938
003
DE-He213
005
20161215103529.0
006
m d
007
cr nn 008maaau
008
201118s2017 gw s 0 eng d
020
$a
9783319458090
$q
(electronic bk.)
020
$a
9783319458076
$q
(paper)
024
7
$a
10.1007/978-3-319-45809-0
$2
doi
035
$a
978-3-319-45809-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QP519.9.M3
072
7
$a
PBT
$2
bicssc
072
7
$a
MBNS
$2
bicssc
072
7
$a
MED090000
$2
bisacsh
082
0 4
$a
543.65
$2
23
090
$a
QP519.9.M3
$b
S797 2017
245
0 0
$a
Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry
$h
[electronic resource] /
$c
edited by Susmita Datta, Bart J. A. Mertens.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
viii, 295 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Frontiers in probability and the statistical sciences
505
0
$a
Transformation, normalization and batch effect in the analysis of mass spectrometry data for omics studies -- Automated Alignment of Mass Spectrometry Data Using Functional Geometry -- The analysis of peptide-centric mass spectrometry data utilizing information about the expected isotope distribution -- Probabilistic and likelihood-based methods for protein identification from MS/MS data -- An MCMC-MRF Algorithm for Incorporating Spatial Information in IMS Data Processing -- Mass Spectrometry Analysis Using MALDIquant -- Model-based analysis of quantitative proteomics data with data independent acquisition mass spectrometry -- The analysis of human serum albumin proteoforms using compositional framework -- Variability Assessment of Label-Free LC-MS Experiments for Difference Detection -- Statistical approach for biomarker discovery using label-free LC-MS data - an overview -- Bayesian posterior integration for classification of mass spectrometry data -- Logistic regression modeling on mass spectrometry data in proteomics case-control discriminant studies -- Robust and confident predictor selection in metabolomics -- On the combination of omics data for prediction of binary Outcomes -- Statistical analysis of lipidomics data in a case-control study.
650
0
$a
Mass spectrometry.
$3
583253
650
0
$a
Proteomics
$x
Statistical methods.
$3
799705
650
0
$a
Lipids
$x
Statistical methods.
$3
1249817
650
1 4
$a
Statistics.
$3
556824
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Biostatistics.
$3
783654
650
2 4
$a
Metabolomics.
$3
882386
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Analytical Chemistry.
$3
668584
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
700
1
$a
Datta, Susmita.
$3
1249815
700
1
$a
Mertens, Bart J. A.
$3
1249816
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Frontiers in probability and the statistical sciences.
$3
1067403
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45809-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入