語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Information geometry and population ...
~
Jost, Jurgen.
Information geometry and population genetics = the mathematical structure of the Wright-Fisher model /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Information geometry and population genetics/ by Julian Hofrichter, Jurgen Jost, Tat Dat Tran.
其他題名:
the mathematical structure of the Wright-Fisher model /
作者:
Hofrichter, Julian.
其他作者:
Jost, Jurgen.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xii, 319 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Population genetics - Mathematical models. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-52045-2
ISBN:
9783319520452
Information geometry and population genetics = the mathematical structure of the Wright-Fisher model /
Hofrichter, Julian.
Information geometry and population genetics
the mathematical structure of the Wright-Fisher model /[electronic resource] :by Julian Hofrichter, Jurgen Jost, Tat Dat Tran. - Cham :Springer International Publishing :2017. - xii, 319 p. :ill., digital ;24 cm. - Understanding complex systems,1860-0832. - Understanding complex systems..
1. Introduction -- 2. The Wright-Fisher model -- 3. Geometric structures and information geometry -- 4. Continuous approximations -- 5. Recombination -- 6. Moment generating and free energy functionals -- 7. Large deviation theory -- 8. The forward equation -- 9. The backward equation -- 10.Applications -- Appendix -- A. Hypergeometric functions and their generalizations -- Bibliography.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
ISBN: 9783319520452
Standard No.: 10.1007/978-3-319-52045-2doiSubjects--Topical Terms:
680103
Population genetics
--Mathematical models.
LC Class. No.: QH455
Dewey Class. No.: 576.58015118
Information geometry and population genetics = the mathematical structure of the Wright-Fisher model /
LDR
:02351nam a2200325 a 4500
001
959129
003
DE-He213
005
20170829091408.0
006
m d
007
cr nn 008maaau
008
201118s2017 gw s 0 eng d
020
$a
9783319520452
$q
(electronic bk.)
020
$a
9783319520445
$q
(paper)
024
7
$a
10.1007/978-3-319-52045-2
$2
doi
035
$a
978-3-319-52045-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH455
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
576.58015118
$2
23
090
$a
QH455
$b
.H713 2017
100
1
$a
Hofrichter, Julian.
$3
1251643
245
1 0
$a
Information geometry and population genetics
$h
[electronic resource] :
$b
the mathematical structure of the Wright-Fisher model /
$c
by Julian Hofrichter, Jurgen Jost, Tat Dat Tran.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xii, 319 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Understanding complex systems,
$x
1860-0832
505
0
$a
1. Introduction -- 2. The Wright-Fisher model -- 3. Geometric structures and information geometry -- 4. Continuous approximations -- 5. Recombination -- 6. Moment generating and free energy functionals -- 7. Large deviation theory -- 8. The forward equation -- 9. The backward equation -- 10.Applications -- Appendix -- A. Hypergeometric functions and their generalizations -- Bibliography.
520
$a
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
650
0
$a
Population genetics
$x
Mathematical models.
$3
680103
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Mathematical and Computational Biology.
$3
786706
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Human Genetics.
$3
593893
650
2 4
$a
Analysis.
$3
669490
650
2 4
$a
Geometry.
$3
579899
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
700
1
$a
Jost, Jurgen.
$3
672455
700
1
$a
Tran, Tat Dat.
$3
1251644
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Understanding complex systems.
$3
881607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-52045-2
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入