語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Comparative Gene Finding = Models, A...
~
SpringerLink (Online service)
Comparative Gene Finding = Models, Algorithms and Implementation /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Comparative Gene Finding/ by Marina Axelson-Fisk.
其他題名:
Models, Algorithms and Implementation /
作者:
Axelson-Fisk, Marina.
面頁冊數:
XX, 382 p. 81 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Bioinformatics. -
電子資源:
https://doi.org/10.1007/978-1-4471-6693-1
ISBN:
9781447166931
Comparative Gene Finding = Models, Algorithms and Implementation /
Axelson-Fisk, Marina.
Comparative Gene Finding
Models, Algorithms and Implementation /[electronic resource] :by Marina Axelson-Fisk. - 2nd ed. 2015. - XX, 382 p. 81 illus.online resource. - Computational Biology,201568-2684 ;. - Computational Biology,22.
Introduction -- Single Species Gene Finding -- Sequence Alignment -- Comparative Gene Finding -- Gene Structure Submodels -- Parameter Training -- Implementation of a Comparative Gene Finder -- Annotation Pipelines for Next Generation Sequencing Projects.
This unique text/reference presents a concise guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a particular focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology, including annotation pipelines for NGS data. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory, and numerical analysis. Topics and features: Introduces the fundamental terms and concepts in the field, and provides an historical overview of algorithm development Discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding Explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training Illustrates how to implement a comparative gene finder, reviewing the different steps and accuracy assessment measures used to debug and benchmark the software Examines NGS techniques, and how to build a genome annotation pipeline, discussing sequence assembly, de novo repeat masking, and gene prediction (NEW) Postgraduate students, and researchers wishing to enter the field quickly, will find this accessible text a valuable source of insights and examples. A suggested course outline for instructors is provided in the preface. Dr. Marina Axelson-Fisk is an Associate Professor at the Department of Mathematical Sciences of Chalmers University of Technology, Gothenburg, Sweden.
ISBN: 9781447166931
Standard No.: 10.1007/978-1-4471-6693-1doiSubjects--Topical Terms:
583857
Bioinformatics.
LC Class. No.: QH324.2-324.25
Dewey Class. No.: 570.285
Comparative Gene Finding = Models, Algorithms and Implementation /
LDR
:03391nam a22004215i 4500
001
960381
003
DE-He213
005
20200701210059.0
007
cr nn 008mamaa
008
201211s2015 xxk| s |||| 0|eng d
020
$a
9781447166931
$9
978-1-4471-6693-1
024
7
$a
10.1007/978-1-4471-6693-1
$2
doi
035
$a
978-1-4471-6693-1
050
4
$a
QH324.2-324.25
072
7
$a
PSA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
PSA
$2
thema
072
7
$a
UB
$2
thema
082
0 4
$a
570.285
$2
23
100
1
$a
Axelson-Fisk, Marina.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1254265
245
1 0
$a
Comparative Gene Finding
$h
[electronic resource] :
$b
Models, Algorithms and Implementation /
$c
by Marina Axelson-Fisk.
250
$a
2nd ed. 2015.
264
1
$a
London :
$b
Springer London :
$b
Imprint: Springer,
$c
2015.
300
$a
XX, 382 p. 81 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Computational Biology,
$x
1568-2684 ;
$v
20
505
0
$a
Introduction -- Single Species Gene Finding -- Sequence Alignment -- Comparative Gene Finding -- Gene Structure Submodels -- Parameter Training -- Implementation of a Comparative Gene Finder -- Annotation Pipelines for Next Generation Sequencing Projects.
520
$a
This unique text/reference presents a concise guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a particular focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology, including annotation pipelines for NGS data. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory, and numerical analysis. Topics and features: Introduces the fundamental terms and concepts in the field, and provides an historical overview of algorithm development Discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding Explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training Illustrates how to implement a comparative gene finder, reviewing the different steps and accuracy assessment measures used to debug and benchmark the software Examines NGS techniques, and how to build a genome annotation pipeline, discussing sequence assembly, de novo repeat masking, and gene prediction (NEW) Postgraduate students, and researchers wishing to enter the field quickly, will find this accessible text a valuable source of insights and examples. A suggested course outline for instructors is provided in the preface. Dr. Marina Axelson-Fisk is an Associate Professor at the Department of Mathematical Sciences of Chalmers University of Technology, Gothenburg, Sweden.
650
0
$a
Bioinformatics.
$3
583857
650
1 4
$a
Computational Biology/Bioinformatics.
$3
677363
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781447166948
776
0 8
$i
Printed edition:
$z
9781447166924
776
0 8
$i
Printed edition:
$z
9781447168751
830
0
$a
Computational Biology,
$x
1568-2684 ;
$v
22
$3
1253896
856
4 0
$u
https://doi.org/10.1007/978-1-4471-6693-1
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入