語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Complex Networks VI = Proceedings of...
~
Mangioni, Giuseppe.
Complex Networks VI = Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Complex Networks VI/ edited by Giuseppe Mangioni, Filippo Simini, Stephen Miles Uzzo, Dashun Wang.
其他題名:
Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 /
其他作者:
Mangioni, Giuseppe.
面頁冊數:
X, 232 p. 74 illus., 52 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-16112-9
ISBN:
9783319161129
Complex Networks VI = Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 /
Complex Networks VI
Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 /[electronic resource] :edited by Giuseppe Mangioni, Filippo Simini, Stephen Miles Uzzo, Dashun Wang. - 1st ed. 2015. - X, 232 p. 74 illus., 52 illus. in color.online resource. - Studies in Computational Intelligence,5971860-949X ;. - Studies in Computational Intelligence,564.
A Flexible Fitness Function for Community Detection in Complex Networks -- Finding network motifs using MCMC sampling -- Analysis of the Robustness of Degree Centrality against Random Errors in Graphs -- A Model for Ambiguation and an Algorithm for Disambiguation in Social Networks -- Measuring the Generalized Friendship Paradox in Networks with Quality-dependent Connectivity -- Expected Nodes: a quality function for the detection of link communities -- Core-Periphery Models for Graphs Based on their -Hyperbolicity: An Example Using Biological Networks -- Fast Optimization of Hamiltonian for Constrained Community Detection -- Selecting Seed Nodes for Influence Maximization in Dynamic Networks -- Neighbourhood Distinctiveness: an initial study -- An Efficient Estimation of a Node’s Between ness -- Sentiment Classification Analysis of Chinese Microblog Network -- Techniques for Brain Functional Connectivity Analysis from High Resolution Imaging -- A Two-Parameter Method to Characterize the Network Reliability for Diffusive Processes -- Analysis of the Effects of Communication Delay in the Distributed Global Connectivity Maintenance of a Multi-Robot System -- Inter-Layer Degree Correlations in Heterogeneously Growing Multiplex Networks -- Dynamics of Conflicting Beliefs in Social Networks -- Building Mini-Categories in Product Networks -- Categorical Framework for Complex Organizational Networks: Understanding the Effects of Types, Size, Layers, Dynamics and Dimensions -- Studying Reciprocity and Communication Probability Ratio in Weighted Phone Call Ego Networks -- NetSci High: Bringing Network Science Research to High Schools -- Terrorism Dynamics on Complex Networks: Group Polarization vs Social Integration -- From Criminal Spheres of Familiarity to Crime Networks -- Communication Probability Ratio in Weighted Phone Call Ego Networks -- NetSci High: Bringing Network Science Research to High Schools -- Terrorism Dynamics on Complex Networks: Group Polarization vs Social Integration -- From Criminal Spheres of Familiarity to Crime Networks -- Communication Probability Ratio in Weighted Phone Call Ego Networks -- NetSci High: Bringing Network Science Research to High Schools -- Terrorism Dynamics on Complex Networks: Group Polarization vs Social Integration -- From Criminal Spheres of Familiarity to Crime Networks.
Elucidating the spatial and temporal dynamics of how things connect has become one of the most important areas of research in the 21st century. Network science now pervades nearly every science domain, resulting in new discoveries in a host of dynamic social and natural systems, including: how neurons connect and communicate in the brain, how information percolates within and among social networks, the evolution of science research through co-authorship networks, the spread of epidemics, and many other complex phenomena. Over the past decade, advances in computational power have put the tools of network analysis in the hands of increasing numbers of scientists, enabling more explorations of our world than ever before possible. Information science, social sciences, systems biology, ecosystems ecology, neuroscience and physics all benefit from this movement, which combines graph theory with data sciences to develop and validate theories about the world around us. This book brings together cutting-edge research from the network science field and includes diverse and interdisciplinary topics such as: modeling the structure of urban systems, behavior in social networks, education and learning, data network architecture, structure and dynamics of organizations, crime and terrorism, as well as network topology, modularity and community detection.
ISBN: 9783319161129
Standard No.: 10.1007/978-3-319-16112-9doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Complex Networks VI = Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 /
LDR
:05207nam a22004095i 4500
001
960898
003
DE-He213
005
20200630035553.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319161129
$9
978-3-319-16112-9
024
7
$a
10.1007/978-3-319-16112-9
$2
doi
035
$a
978-3-319-16112-9
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
245
1 0
$a
Complex Networks VI
$h
[electronic resource] :
$b
Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 /
$c
edited by Giuseppe Mangioni, Filippo Simini, Stephen Miles Uzzo, Dashun Wang.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
X, 232 p. 74 illus., 52 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
597
505
0
$a
A Flexible Fitness Function for Community Detection in Complex Networks -- Finding network motifs using MCMC sampling -- Analysis of the Robustness of Degree Centrality against Random Errors in Graphs -- A Model for Ambiguation and an Algorithm for Disambiguation in Social Networks -- Measuring the Generalized Friendship Paradox in Networks with Quality-dependent Connectivity -- Expected Nodes: a quality function for the detection of link communities -- Core-Periphery Models for Graphs Based on their -Hyperbolicity: An Example Using Biological Networks -- Fast Optimization of Hamiltonian for Constrained Community Detection -- Selecting Seed Nodes for Influence Maximization in Dynamic Networks -- Neighbourhood Distinctiveness: an initial study -- An Efficient Estimation of a Node’s Between ness -- Sentiment Classification Analysis of Chinese Microblog Network -- Techniques for Brain Functional Connectivity Analysis from High Resolution Imaging -- A Two-Parameter Method to Characterize the Network Reliability for Diffusive Processes -- Analysis of the Effects of Communication Delay in the Distributed Global Connectivity Maintenance of a Multi-Robot System -- Inter-Layer Degree Correlations in Heterogeneously Growing Multiplex Networks -- Dynamics of Conflicting Beliefs in Social Networks -- Building Mini-Categories in Product Networks -- Categorical Framework for Complex Organizational Networks: Understanding the Effects of Types, Size, Layers, Dynamics and Dimensions -- Studying Reciprocity and Communication Probability Ratio in Weighted Phone Call Ego Networks -- NetSci High: Bringing Network Science Research to High Schools -- Terrorism Dynamics on Complex Networks: Group Polarization vs Social Integration -- From Criminal Spheres of Familiarity to Crime Networks -- Communication Probability Ratio in Weighted Phone Call Ego Networks -- NetSci High: Bringing Network Science Research to High Schools -- Terrorism Dynamics on Complex Networks: Group Polarization vs Social Integration -- From Criminal Spheres of Familiarity to Crime Networks -- Communication Probability Ratio in Weighted Phone Call Ego Networks -- NetSci High: Bringing Network Science Research to High Schools -- Terrorism Dynamics on Complex Networks: Group Polarization vs Social Integration -- From Criminal Spheres of Familiarity to Crime Networks.
520
$a
Elucidating the spatial and temporal dynamics of how things connect has become one of the most important areas of research in the 21st century. Network science now pervades nearly every science domain, resulting in new discoveries in a host of dynamic social and natural systems, including: how neurons connect and communicate in the brain, how information percolates within and among social networks, the evolution of science research through co-authorship networks, the spread of epidemics, and many other complex phenomena. Over the past decade, advances in computational power have put the tools of network analysis in the hands of increasing numbers of scientists, enabling more explorations of our world than ever before possible. Information science, social sciences, systems biology, ecosystems ecology, neuroscience and physics all benefit from this movement, which combines graph theory with data sciences to develop and validate theories about the world around us. This book brings together cutting-edge research from the network science field and includes diverse and interdisciplinary topics such as: modeling the structure of urban systems, behavior in social networks, education and learning, data network architecture, structure and dynamics of organizations, crime and terrorism, as well as network topology, modularity and community detection.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Mangioni, Giuseppe.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1255036
700
1
$a
Simini, Filippo.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1255037
700
1
$a
Uzzo, Stephen Miles.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1210358
700
1
$a
Wang, Dashun.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1255038
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319161136
776
0 8
$i
Printed edition:
$z
9783319161112
776
0 8
$i
Printed edition:
$z
9783319386508
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-319-16112-9
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入