語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Probability Collectives = A Distribu...
~
Kulkarni, Anand Jayant.
Probability Collectives = A Distributed Multi-agent System Approach for Optimization /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Probability Collectives/ by Anand Jayant Kulkarni, Kang Tai, Ajith Abraham.
其他題名:
A Distributed Multi-agent System Approach for Optimization /
作者:
Kulkarni, Anand Jayant.
其他作者:
Tai, Kang.
面頁冊數:
IX, 157 p. 68 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-16000-9
ISBN:
9783319160009
Probability Collectives = A Distributed Multi-agent System Approach for Optimization /
Kulkarni, Anand Jayant.
Probability Collectives
A Distributed Multi-agent System Approach for Optimization /[electronic resource] :by Anand Jayant Kulkarni, Kang Tai, Ajith Abraham. - 1st ed. 2015. - IX, 157 p. 68 illus.online resource. - Intelligent Systems Reference Library,861868-4394 ;. - Intelligent Systems Reference Library,67.
Introduction to Optimization -- Probability Collectives: A Distributed Optimization Approach -- Constrained Probability Collectives: A Heuristic Approach -- Constrained Probability Collectives with a Penalty Function Approach -- Constrained Probability Collectives With Feasibility-Based Rule I -- Probability Collectives for Discrete and Mixed Variable Problems -- Probability Collectives with Feasibility-Based Rule II.
This book provides an emerging computational intelligence tool in the framework of collective intelligence for modeling and controlling distributed multi-agent systems referred to as Probability Collectives. In the modified Probability Collectives methodology a number of constraint handling techniques are incorporated, which also reduces the computational complexity and improved the convergence and efficiency. Numerous examples and real world problems are used for illustration, which may also allow the reader to gain further insight into the associated concepts.
ISBN: 9783319160009
Standard No.: 10.1007/978-3-319-16000-9doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Probability Collectives = A Distributed Multi-agent System Approach for Optimization /
LDR
:02428nam a22004095i 4500
001
961142
003
DE-He213
005
20200701104153.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319160009
$9
978-3-319-16000-9
024
7
$a
10.1007/978-3-319-16000-9
$2
doi
035
$a
978-3-319-16000-9
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Kulkarni, Anand Jayant.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1066528
245
1 0
$a
Probability Collectives
$h
[electronic resource] :
$b
A Distributed Multi-agent System Approach for Optimization /
$c
by Anand Jayant Kulkarni, Kang Tai, Ajith Abraham.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
IX, 157 p. 68 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Intelligent Systems Reference Library,
$x
1868-4394 ;
$v
86
505
0
$a
Introduction to Optimization -- Probability Collectives: A Distributed Optimization Approach -- Constrained Probability Collectives: A Heuristic Approach -- Constrained Probability Collectives with a Penalty Function Approach -- Constrained Probability Collectives With Feasibility-Based Rule I -- Probability Collectives for Discrete and Mixed Variable Problems -- Probability Collectives with Feasibility-Based Rule II.
520
$a
This book provides an emerging computational intelligence tool in the framework of collective intelligence for modeling and controlling distributed multi-agent systems referred to as Probability Collectives. In the modified Probability Collectives methodology a number of constraint handling techniques are incorporated, which also reduces the computational complexity and improved the convergence and efficiency. Numerous examples and real world problems are used for illustration, which may also allow the reader to gain further insight into the associated concepts.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Statistical physics.
$3
528048
650
0
$a
Dynamical systems.
$3
1249739
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Complex Systems.
$3
888664
650
2 4
$a
Statistical Physics and Dynamical Systems.
$3
1114011
700
1
$a
Tai, Kang.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1066529
700
1
$a
Abraham, Ajith.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
670176
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319160016
776
0 8
$i
Printed edition:
$z
9783319159997
776
0 8
$i
Printed edition:
$z
9783319365213
830
0
$a
Intelligent Systems Reference Library,
$x
1868-4394 ;
$v
67
$3
1253823
856
4 0
$u
https://doi.org/10.1007/978-3-319-16000-9
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入