語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real Analysis via Sequences and Series
~
Teo, Kee L.
Real Analysis via Sequences and Series
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Real Analysis via Sequences and Series/ by Charles H.C. Little, Kee L. Teo, Bruce van Brunt.
作者:
Little, Charles H.C.
其他作者:
Teo, Kee L.
面頁冊數:
XI, 476 p. 27 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Functions of real variables. -
電子資源:
https://doi.org/10.1007/978-1-4939-2651-0
ISBN:
9781493926510
Real Analysis via Sequences and Series
Little, Charles H.C.
Real Analysis via Sequences and Series
[electronic resource] /by Charles H.C. Little, Kee L. Teo, Bruce van Brunt. - 1st ed. 2015. - XI, 476 p. 27 illus.online resource. - Undergraduate Texts in Mathematics,0172-6056. - Undergraduate Texts in Mathematics,.
Preface -- 1. Introduction -- 2. Sequences -- 3. Series -- 4. Limits of Functions -- 5. Continuity -- 6. Differentiability -- 7. The Riemann Integral -- 8. Taylor Polynomials and Taylor Series -- 9. The Fixed Point Problem -- 10. Sequences of Functions -- Bibliography -- Index.
This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results, and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e, and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions.
ISBN: 9781493926510
Standard No.: 10.1007/978-1-4939-2651-0doiSubjects--Topical Terms:
792248
Functions of real variables.
LC Class. No.: QA331.5
Dewey Class. No.: 515.8
Real Analysis via Sequences and Series
LDR
:02551nam a22004095i 4500
001
961286
003
DE-He213
005
20200629150734.0
007
cr nn 008mamaa
008
201211s2015 xxu| s |||| 0|eng d
020
$a
9781493926510
$9
978-1-4939-2651-0
024
7
$a
10.1007/978-1-4939-2651-0
$2
doi
035
$a
978-1-4939-2651-0
050
4
$a
QA331.5
072
7
$a
PBKB
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKB
$2
thema
082
0 4
$a
515.8
$2
23
100
1
$a
Little, Charles H.C.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1255579
245
1 0
$a
Real Analysis via Sequences and Series
$h
[electronic resource] /
$c
by Charles H.C. Little, Kee L. Teo, Bruce van Brunt.
250
$a
1st ed. 2015.
264
1
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2015.
300
$a
XI, 476 p. 27 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Undergraduate Texts in Mathematics,
$x
0172-6056
505
0
$a
Preface -- 1. Introduction -- 2. Sequences -- 3. Series -- 4. Limits of Functions -- 5. Continuity -- 6. Differentiability -- 7. The Riemann Integral -- 8. Taylor Polynomials and Taylor Series -- 9. The Fixed Point Problem -- 10. Sequences of Functions -- Bibliography -- Index.
520
$a
This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results, and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e, and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions.
650
0
$a
Functions of real variables.
$3
792248
650
0
$a
Sequences (Mathematics).
$3
1253882
650
1 4
$a
Real Functions.
$3
672094
650
2 4
$a
Sequences, Series, Summability.
$3
672022
700
1
$a
Teo, Kee L.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1255580
700
1
$a
van Brunt, Bruce.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1255581
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781493926527
776
0 8
$i
Printed edition:
$z
9781493926503
776
0 8
$i
Printed edition:
$z
9781493941810
830
0
$a
Undergraduate Texts in Mathematics,
$x
0172-6056
$3
1253653
856
4 0
$u
https://doi.org/10.1007/978-1-4939-2651-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入