語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Improving Infrared-Based Precipitati...
~
SpringerLink (Online service)
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery/ by Nasrin Nasrollahi.
作者:
Nasrollahi, Nasrin.
面頁冊數:
XXI, 68 p. 41 illus., 38 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Atmospheric sciences. -
電子資源:
https://doi.org/10.1007/978-3-319-12081-2
ISBN:
9783319120812
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
Nasrollahi, Nasrin.
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
[electronic resource] /by Nasrin Nasrollahi. - 1st ed. 2015. - XXI, 68 p. 41 illus., 38 illus. in color.online resource. - Springer Theses, Recognizing Outstanding Ph.D. Research,2190-5053. - Springer Theses, Recognizing Outstanding Ph.D. Research,.
Introduction to the Current States of Satellite Precipitation Products -- False Alarm in Satellite Precipitation Data -- Satellite Observations -- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images -- Integration of CloudSat Precipitation Profile in Reduction of False Rain -- Cloud Classification and its Application in Reducing False Rain -- Summary and Conclusions.
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
ISBN: 9783319120812
Standard No.: 10.1007/978-3-319-12081-2doiSubjects--Topical Terms:
1179392
Atmospheric sciences.
LC Class. No.: QC851-999
Dewey Class. No.: 551.5
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
LDR
:02834nam a22004095i 4500
001
961361
003
DE-He213
005
20200629115516.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319120812
$9
978-3-319-12081-2
024
7
$a
10.1007/978-3-319-12081-2
$2
doi
035
$a
978-3-319-12081-2
050
4
$a
QC851-999
072
7
$a
RB
$2
bicssc
072
7
$a
SCI042000
$2
bisacsh
072
7
$a
RB
$2
thema
082
0 4
$a
551.5
$2
23
100
1
$a
Nasrollahi, Nasrin.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1064011
245
1 0
$a
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
$h
[electronic resource] /
$c
by Nasrin Nasrollahi.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XXI, 68 p. 41 illus., 38 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Theses, Recognizing Outstanding Ph.D. Research,
$x
2190-5053
505
0
$a
Introduction to the Current States of Satellite Precipitation Products -- False Alarm in Satellite Precipitation Data -- Satellite Observations -- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images -- Integration of CloudSat Precipitation Profile in Reduction of False Rain -- Cloud Classification and its Application in Reducing False Rain -- Summary and Conclusions.
520
$a
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
650
0
$a
Atmospheric sciences.
$3
1179392
650
0
$a
Geophysics.
$3
686174
650
0
$a
Meteorology.
$3
554820
650
0
$a
Environmental sciences.
$3
558921
650
1 4
$a
Atmospheric Sciences.
$3
881331
650
2 4
$a
Geophysics and Environmental Physics.
$3
782420
650
2 4
$a
Environmental Physics.
$3
670383
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319120805
776
0 8
$i
Printed edition:
$z
9783319120829
776
0 8
$i
Printed edition:
$z
9783319363325
830
0
$a
Springer Theses, Recognizing Outstanding Ph.D. Research,
$x
2190-5053
$3
1253569
856
4 0
$u
https://doi.org/10.1007/978-3-319-12081-2
912
$a
ZDB-2-EES
912
$a
ZDB-2-SXEE
950
$a
Earth and Environmental Science (SpringerNature-11646)
950
$a
Earth and Environmental Science (R0) (SpringerNature-43711)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入