語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pole Solutions for Flame Front Propa...
~
Kupervasser, Oleg.
Pole Solutions for Flame Front Propagation
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Pole Solutions for Flame Front Propagation/ by Oleg Kupervasser.
作者:
Kupervasser, Oleg.
面頁冊數:
XII, 118 p. 37 illus., 10 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Applied mathematics. -
電子資源:
https://doi.org/10.1007/978-3-319-18845-4
ISBN:
9783319188454
Pole Solutions for Flame Front Propagation
Kupervasser, Oleg.
Pole Solutions for Flame Front Propagation
[electronic resource] /by Oleg Kupervasser. - 1st ed. 2015. - XII, 118 p. 37 illus., 10 illus. in color.online resource. - Mathematical and Analytical Techniques with Applications to Engineering,1559-7458. - Mathematical and Analytical Techniques with Applications to Engineering,.
Introduction -- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry -- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane -- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries -- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution -- Summary.
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
ISBN: 9783319188454
Standard No.: 10.1007/978-3-319-18845-4doiSubjects--Topical Terms:
1069907
Applied mathematics.
LC Class. No.: TA329-348
Dewey Class. No.: 519
Pole Solutions for Flame Front Propagation
LDR
:02577nam a22004215i 4500
001
963148
003
DE-He213
005
20200703103905.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319188454
$9
978-3-319-18845-4
024
7
$a
10.1007/978-3-319-18845-4
$2
doi
035
$a
978-3-319-18845-4
050
4
$a
TA329-348
050
4
$a
TA640-643
072
7
$a
TBJ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
TBJ
$2
thema
082
0 4
$a
519
$2
23
100
1
$a
Kupervasser, Oleg.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1067180
245
1 0
$a
Pole Solutions for Flame Front Propagation
$h
[electronic resource] /
$c
by Oleg Kupervasser.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XII, 118 p. 37 illus., 10 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Mathematical and Analytical Techniques with Applications to Engineering,
$x
1559-7458
505
0
$a
Introduction -- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry -- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane -- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries -- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution -- Summary.
520
$a
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
650
0
$a
Applied mathematics.
$3
1069907
650
0
$a
Engineering mathematics.
$3
562757
650
0
$a
Plasma (Ionized gases).
$3
1253465
650
0
$a
Fluid mechanics.
$3
555551
650
1 4
$a
Mathematical and Computational Engineering.
$3
1139415
650
2 4
$a
Plasma Physics.
$3
768744
650
2 4
$a
Engineering Fluid Dynamics.
$3
670525
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319188461
776
0 8
$i
Printed edition:
$z
9783319188447
776
0 8
$i
Printed edition:
$z
9783319368818
830
0
$a
Mathematical and Analytical Techniques with Applications to Engineering,
$x
1559-7458
$3
1258088
856
4 0
$u
https://doi.org/10.1007/978-3-319-18845-4
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入