語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Protein Homology Detection Through A...
~
Xu, Jinbo.
Protein Homology Detection Through Alignment of Markov Random Fields = Using MRFalign /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Protein Homology Detection Through Alignment of Markov Random Fields/ by Jinbo Xu, Sheng Wang, Jianzhu Ma.
其他題名:
Using MRFalign /
作者:
Xu, Jinbo.
其他作者:
Wang, Sheng.
面頁冊數:
VIII, 51 p. 13 illus., 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Bioinformatics. -
電子資源:
https://doi.org/10.1007/978-3-319-14914-1
ISBN:
9783319149141
Protein Homology Detection Through Alignment of Markov Random Fields = Using MRFalign /
Xu, Jinbo.
Protein Homology Detection Through Alignment of Markov Random Fields
Using MRFalign /[electronic resource] :by Jinbo Xu, Sheng Wang, Jianzhu Ma. - 1st ed. 2015. - VIII, 51 p. 13 illus., 1 illus. in color.online resource. - SpringerBriefs in Computer Science,2191-5768. - SpringerBriefs in Computer Science,.
Introduction -- Method -- Software -- Experiments and Results -- Conclusion.
This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method.
ISBN: 9783319149141
Standard No.: 10.1007/978-3-319-14914-1doiSubjects--Topical Terms:
583857
Bioinformatics.
LC Class. No.: QH324.2-324.25
Dewey Class. No.: 570.285
Protein Homology Detection Through Alignment of Markov Random Fields = Using MRFalign /
LDR
:02226nam a22004095i 4500
001
963154
003
DE-He213
005
20200706071946.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319149141
$9
978-3-319-14914-1
024
7
$a
10.1007/978-3-319-14914-1
$2
doi
035
$a
978-3-319-14914-1
050
4
$a
QH324.2-324.25
072
7
$a
PSA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
PSA
$2
thema
072
7
$a
UB
$2
thema
082
0 4
$a
570.285
$2
23
100
1
$a
Xu, Jinbo.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1065655
245
1 0
$a
Protein Homology Detection Through Alignment of Markov Random Fields
$h
[electronic resource] :
$b
Using MRFalign /
$c
by Jinbo Xu, Sheng Wang, Jianzhu Ma.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
VIII, 51 p. 13 illus., 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computer Science,
$x
2191-5768
505
0
$a
Introduction -- Method -- Software -- Experiments and Results -- Conclusion.
520
$a
This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method.
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Mathematical statistics.
$3
527941
650
0
$a
Statistics .
$3
1253516
650
1 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
700
1
$a
Wang, Sheng.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1065656
700
1
$a
Ma, Jianzhu.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1065657
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319149134
776
0 8
$i
Printed edition:
$z
9783319149158
830
0
$a
SpringerBriefs in Computer Science,
$x
2191-5768
$3
1255334
856
4 0
$u
https://doi.org/10.1007/978-3-319-14914-1
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入