語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Visualization and Processing of High...
~
Schultz, Thomas.
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data/ edited by Ingrid Hotz, Thomas Schultz.
其他作者:
Hotz, Ingrid.
面頁冊數:
X, 383 p. 173 illus., 149 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-319-15090-1
ISBN:
9783319150901
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
[electronic resource] /edited by Ingrid Hotz, Thomas Schultz. - 1st ed. 2015. - X, 383 p. 173 illus., 149 illus. in color.online resource. - Mathematics and Visualization,1612-3786. - Mathematics and Visualization,.
Part I: Mathematical Foundations: 1 Cem Yolcu and Evren Özarslan: Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Function Framework, Path Integrals, and Parallels Between Them -- 2 T.C.J. Dela Haije, A. Fuster and L.M.J. Florack: Finslerian Diffusion and the Bloch-Torrey Equation -- 3 M. Moakher and P. J. Basser: Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetries -- 4 Yue Zhang, Jonathan Palacios and Eugene Zhang: Topology of 3D Linear Symmetric Tensor Fields -- 5 Carmeliza Navasca and Deonnia N. Pompey: Random Projections for Low Multilinear Rank Tensors -- Part II: Processing, Filtering and Interpolation: 6 Jasper J. van de Gronde, Mikola Lysenko and Jos B.T.M. Roerdink: Path-Based Mathematical Morphology on Tensor Fields -- 7 Andreas Kleefeld and Bernhard Burgeth: Processing Multispectral Images via Mathematical Morphology -- 8 Luc Florack, Tom Dela Haije and Andrea Fuster: Direction-Controlled DTI Interpolation -- 9 Daniel Jörgens and Rodrigo Moreno: Tensor Voting: Current State, Challenges and New Trends in the Context of Medical Image Analysis -- Part III: Visualization: 10 Olivier Vaillancourt, Maxime Chamberland, Jean-Christophe Houde and Maxime Descoteaux: Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal -- 11 Sujal Bista, Jiachen Zhuo, Rao P. Gullapalli and Amitabh Varshney: Visual Knowledge Discovery for Diffusion Kurtosis Datasets of the Human Brain -- 12 Tobias Isenberg: A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography -- 13 Valentin Zobel, Jan Reininghaus and Ingrid Hotz: Visualizing Symmetric Indefinite 2D Tensor Fields sing the Heat Kernel Signature -- Part IV: Statistical Analysis: 14 Maxime Taquet, Benoit Scherrer and Simon K. Warfield: A Framework for the Analysis of Diffusion Compartment Imaging (DCT) -- 15 Lauren J. O’Donnell and Thomas Schultz: Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data -- Part V: Applications: 16 A. aries, T. Luciani, P.H. Pisciuneri, M.B. Nik, S.L. Yilmaz, P. Givi and G.E. Marai A Clustering Method for Identifying Regions of Interest in Turbulent Combustion Tensor Fields -- 17 Mark Schöneich, Andrea Kratz, Valentin Zobel, Gerik Scheuermann, Markus Stommel, and Ingrid Hotz: Tensor Lines in Engineering – Success, Failure, and Open Questions -- 18 Vesna Prchkovska, Magí Andorrà , Pablo Villoslada, Eloy Martinez-Heras, Remco Duits, David Fortin, Paulo Rodrigues and Maxime Descoteaux: Contextual Diffusion Image Post-Processing Aids Clinical Applications.
Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization, and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area, and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics, and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. This book will appeal to scientists who are working to develop new analysis methods in the areas of image processing and visualization, as well as those who work with applications that generate higher-order data or could benefit from higher-order models and are searching for novel analytical tools.
ISBN: 9783319150901
Standard No.: 10.1007/978-3-319-15090-1doiSubjects--Topical Terms:
527692
Mathematics.
LC Class. No.: QA76.9.I52
Dewey Class. No.: 004
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
LDR
:05689nam a22004095i 4500
001
963544
003
DE-He213
005
20200630200604.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319150901
$9
978-3-319-15090-1
024
7
$a
10.1007/978-3-319-15090-1
$2
doi
035
$a
978-3-319-15090-1
050
4
$a
QA76.9.I52
072
7
$a
PBV
$2
bicssc
072
7
$a
MAT013000
$2
bisacsh
072
7
$a
PBV
$2
thema
082
0 4
$a
004
$2
23
245
1 0
$a
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
$h
[electronic resource] /
$c
edited by Ingrid Hotz, Thomas Schultz.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
X, 383 p. 173 illus., 149 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Mathematics and Visualization,
$x
1612-3786
505
0
$a
Part I: Mathematical Foundations: 1 Cem Yolcu and Evren Özarslan: Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Function Framework, Path Integrals, and Parallels Between Them -- 2 T.C.J. Dela Haije, A. Fuster and L.M.J. Florack: Finslerian Diffusion and the Bloch-Torrey Equation -- 3 M. Moakher and P. J. Basser: Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetries -- 4 Yue Zhang, Jonathan Palacios and Eugene Zhang: Topology of 3D Linear Symmetric Tensor Fields -- 5 Carmeliza Navasca and Deonnia N. Pompey: Random Projections for Low Multilinear Rank Tensors -- Part II: Processing, Filtering and Interpolation: 6 Jasper J. van de Gronde, Mikola Lysenko and Jos B.T.M. Roerdink: Path-Based Mathematical Morphology on Tensor Fields -- 7 Andreas Kleefeld and Bernhard Burgeth: Processing Multispectral Images via Mathematical Morphology -- 8 Luc Florack, Tom Dela Haije and Andrea Fuster: Direction-Controlled DTI Interpolation -- 9 Daniel Jörgens and Rodrigo Moreno: Tensor Voting: Current State, Challenges and New Trends in the Context of Medical Image Analysis -- Part III: Visualization: 10 Olivier Vaillancourt, Maxime Chamberland, Jean-Christophe Houde and Maxime Descoteaux: Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal -- 11 Sujal Bista, Jiachen Zhuo, Rao P. Gullapalli and Amitabh Varshney: Visual Knowledge Discovery for Diffusion Kurtosis Datasets of the Human Brain -- 12 Tobias Isenberg: A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography -- 13 Valentin Zobel, Jan Reininghaus and Ingrid Hotz: Visualizing Symmetric Indefinite 2D Tensor Fields sing the Heat Kernel Signature -- Part IV: Statistical Analysis: 14 Maxime Taquet, Benoit Scherrer and Simon K. Warfield: A Framework for the Analysis of Diffusion Compartment Imaging (DCT) -- 15 Lauren J. O’Donnell and Thomas Schultz: Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data -- Part V: Applications: 16 A. aries, T. Luciani, P.H. Pisciuneri, M.B. Nik, S.L. Yilmaz, P. Givi and G.E. Marai A Clustering Method for Identifying Regions of Interest in Turbulent Combustion Tensor Fields -- 17 Mark Schöneich, Andrea Kratz, Valentin Zobel, Gerik Scheuermann, Markus Stommel, and Ingrid Hotz: Tensor Lines in Engineering – Success, Failure, and Open Questions -- 18 Vesna Prchkovska, Magí Andorrà , Pablo Villoslada, Eloy Martinez-Heras, Remco Duits, David Fortin, Paulo Rodrigues and Maxime Descoteaux: Contextual Diffusion Image Post-Processing Aids Clinical Applications.
520
$a
Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization, and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area, and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics, and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. This book will appeal to scientists who are working to develop new analysis methods in the areas of image processing and visualization, as well as those who work with applications that generate higher-order data or could benefit from higher-order models and are searching for novel analytical tools.
650
0
$a
Mathematics.
$3
527692
650
0
$a
Visualization.
$3
574210
650
0
$a
Matrix theory.
$3
1023862
650
0
$a
Algebra.
$2
gtt
$3
579870
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Optical data processing.
$3
639187
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
672090
650
2 4
$a
Computational Science and Engineering.
$3
670319
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
700
1
$a
Hotz, Ingrid.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1067370
700
1
$a
Schultz, Thomas.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1023869
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319150895
776
0 8
$i
Printed edition:
$z
9783319150918
776
0 8
$i
Printed edition:
$z
9783319364544
830
0
$a
Mathematics and Visualization,
$x
1612-3786
$3
1258559
856
4 0
$u
https://doi.org/10.1007/978-3-319-15090-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入