語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feature Selection for High-Dimension...
~
Sánchez-Maroño, Noelia.
Feature Selection for High-Dimensional Data
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Feature Selection for High-Dimensional Data/ by Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos.
作者:
Bolón-Canedo, Verónica.
其他作者:
Sánchez-Maroño, Noelia.
面頁冊數:
XV, 147 p. 16 illus., 8 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-21858-8
ISBN:
9783319218588
Feature Selection for High-Dimensional Data
Bolón-Canedo, Verónica.
Feature Selection for High-Dimensional Data
[electronic resource] /by Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos. - 1st ed. 2015. - XV, 147 p. 16 illus., 8 illus. in color.online resource. - Artificial Intelligence: Foundations, Theory, and Algorithms,2365-3051. - Artificial Intelligence: Foundations, Theory, and Algorithms,.
Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
ISBN: 9783319218588
Standard No.: 10.1007/978-3-319-21858-8doiSubjects--Topical Terms:
559380
Artificial intelligence.
LC Class. No.: Q334-342
Dewey Class. No.: 006.3
Feature Selection for High-Dimensional Data
LDR
:02822nam a22004095i 4500
001
963662
003
DE-He213
005
20200703134715.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319218588
$9
978-3-319-21858-8
024
7
$a
10.1007/978-3-319-21858-8
$2
doi
035
$a
978-3-319-21858-8
050
4
$a
Q334-342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Bolón-Canedo, Verónica.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1258694
245
1 0
$a
Feature Selection for High-Dimensional Data
$h
[electronic resource] /
$c
by Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XV, 147 p. 16 illus., 8 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Artificial Intelligence: Foundations, Theory, and Algorithms,
$x
2365-3051
505
0
$a
Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
520
$a
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Data mining.
$3
528622
650
0
$a
Data structures (Computer science).
$3
680370
650
1 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Data Structures.
$3
669824
700
1
$a
Sánchez-Maroño, Noelia.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1258695
700
1
$a
Alonso-Betanzos, Amparo.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1069164
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319218571
776
0 8
$i
Printed edition:
$z
9783319218595
776
0 8
$i
Printed edition:
$z
9783319366432
830
0
$a
Artificial Intelligence: Foundations, Theory, and Algorithms,
$x
2365-3051
$3
1255341
856
4 0
$u
https://doi.org/10.1007/978-3-319-21858-8
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入