語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Automatic Design of Decision-Tree In...
~
de Carvalho, André C.P.L.F.
Automatic Design of Decision-Tree Induction Algorithms
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Automatic Design of Decision-Tree Induction Algorithms/ by Rodrigo C. Barros, André C.P.L.F de Carvalho, Alex A. Freitas.
作者:
Barros, Rodrigo C.
其他作者:
de Carvalho, André C.P.L.F.
面頁冊數:
XII, 176 p. 18 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Data mining. -
電子資源:
https://doi.org/10.1007/978-3-319-14231-9
ISBN:
9783319142319
Automatic Design of Decision-Tree Induction Algorithms
Barros, Rodrigo C.
Automatic Design of Decision-Tree Induction Algorithms
[electronic resource] /by Rodrigo C. Barros, André C.P.L.F de Carvalho, Alex A. Freitas. - 1st ed. 2015. - XII, 176 p. 18 illus.online resource. - SpringerBriefs in Computer Science,2191-5768. - SpringerBriefs in Computer Science,.
Introduction -- Decision-Tree Induction -- Evolutionary Algorithms and Hyper-Heuristics -- HEAD-DT: Automatic Design of Decision-Tree Algorithms -- HEAD-DT: Experimental Analysis -- HEAD-DT: Fitness Function Analysis -- Conclusions.
Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics. "Automatic Design of Decision-Tree Induction Algorithms" would be highly useful for machine learning and evolutionary computation students and researchers alike.
ISBN: 9783319142319
Standard No.: 10.1007/978-3-319-14231-9doiSubjects--Topical Terms:
528622
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Automatic Design of Decision-Tree Induction Algorithms
LDR
:02709nam a22004095i 4500
001
963744
003
DE-He213
005
20200702212513.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319142319
$9
978-3-319-14231-9
024
7
$a
10.1007/978-3-319-14231-9
$2
doi
035
$a
978-3-319-14231-9
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.312
$2
23
100
1
$a
Barros, Rodrigo C.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1066325
245
1 0
$a
Automatic Design of Decision-Tree Induction Algorithms
$h
[electronic resource] /
$c
by Rodrigo C. Barros, André C.P.L.F de Carvalho, Alex A. Freitas.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XII, 176 p. 18 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computer Science,
$x
2191-5768
505
0
$a
Introduction -- Decision-Tree Induction -- Evolutionary Algorithms and Hyper-Heuristics -- HEAD-DT: Automatic Design of Decision-Tree Algorithms -- HEAD-DT: Experimental Analysis -- HEAD-DT: Fitness Function Analysis -- Conclusions.
520
$a
Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics. "Automatic Design of Decision-Tree Induction Algorithms" would be highly useful for machine learning and evolutionary computation students and researchers alike.
650
0
$a
Data mining.
$3
528622
650
0
$a
Pattern recognition.
$3
1253525
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Pattern Recognition.
$3
669796
700
1
$a
de Carvalho, André C.P.L.F.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1258768
700
1
$a
Freitas, Alex A.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1066327
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319142326
776
0 8
$i
Printed edition:
$z
9783319142302
830
0
$a
SpringerBriefs in Computer Science,
$x
2191-5768
$3
1255334
856
4 0
$u
https://doi.org/10.1007/978-3-319-14231-9
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入