Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Multidimensional Periodic Schrödinge...
~
Veliev, Oktay.
Multidimensional Periodic Schrödinger Operator = Perturbation Theory and Applications /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Multidimensional Periodic Schrödinger Operator/ by Oktay Veliev.
Reminder of title:
Perturbation Theory and Applications /
Author:
Veliev, Oktay.
Description:
X, 242 p.online resource. :
Contained By:
Springer Nature eBook
Subject:
Quantum physics. -
Online resource:
https://doi.org/10.1007/978-3-319-16643-8
ISBN:
9783319166438
Multidimensional Periodic Schrödinger Operator = Perturbation Theory and Applications /
Veliev, Oktay.
Multidimensional Periodic Schrödinger Operator
Perturbation Theory and Applications /[electronic resource] :by Oktay Veliev. - 1st ed. 2015. - X, 242 p.online resource. - Springer Tracts in Modern Physics,2630081-3869 ;. - Springer Tracts in Modern Physics,260.
Preface -- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions -- Constructive Determination of the Spectral Invariants -- Periodic Potential from the Spectral Invariants -- Conclusions.
The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the end an algorithm for the unique determination of the potential is given.
ISBN: 9783319166438
Standard No.: 10.1007/978-3-319-16643-8doiSubjects--Topical Terms:
1179090
Quantum physics.
LC Class. No.: QC173.96-174.52
Dewey Class. No.: 530.12
Multidimensional Periodic Schrödinger Operator = Perturbation Theory and Applications /
LDR
:02721nam a22004095i 4500
001
966032
003
DE-He213
005
20200704094602.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319166438
$9
978-3-319-16643-8
024
7
$a
10.1007/978-3-319-16643-8
$2
doi
035
$a
978-3-319-16643-8
050
4
$a
QC173.96-174.52
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
530.12
$2
23
100
1
$a
Veliev, Oktay.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1229773
245
1 0
$a
Multidimensional Periodic Schrödinger Operator
$h
[electronic resource] :
$b
Perturbation Theory and Applications /
$c
by Oktay Veliev.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
X, 242 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Tracts in Modern Physics,
$x
0081-3869 ;
$v
263
505
0
$a
Preface -- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions -- Constructive Determination of the Spectral Invariants -- Periodic Potential from the Spectral Invariants -- Conclusions.
520
$a
The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the end an algorithm for the unique determination of the potential is given.
650
0
$a
Quantum physics.
$3
1179090
650
0
$a
Solid state physics.
$3
641431
650
0
$a
Mathematical physics.
$3
527831
650
1 4
$a
Quantum Physics.
$3
671960
650
2 4
$a
Solid State Physics.
$3
768851
650
2 4
$a
Mathematical Physics.
$3
786661
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319166445
776
0 8
$i
Printed edition:
$z
9783319166421
776
0 8
$i
Printed edition:
$z
9783319386713
830
0
$a
Springer Tracts in Modern Physics,
$x
0081-3869 ;
$v
260
$3
1254078
856
4 0
$u
https://doi.org/10.1007/978-3-319-16643-8
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login