Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Infinity Properads and Infinity Whee...
~
Robertson, Marcy.
Infinity Properads and Infinity Wheeled Properads
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Infinity Properads and Infinity Wheeled Properads/ by Philip Hackney, Marcy Robertson, Donald Yau.
Author:
Hackney, Philip.
other author:
Robertson, Marcy.
Description:
XV, 358 p. 213 illus.online resource. :
Contained By:
Springer Nature eBook
Subject:
Algebraic topology. -
Online resource:
https://doi.org/10.1007/978-3-319-20547-2
ISBN:
9783319205472
Infinity Properads and Infinity Wheeled Properads
Hackney, Philip.
Infinity Properads and Infinity Wheeled Properads
[electronic resource] /by Philip Hackney, Marcy Robertson, Donald Yau. - 1st ed. 2015. - XV, 358 p. 213 illus.online resource. - Lecture Notes in Mathematics,21470075-8434 ;. - Lecture Notes in Mathematics,2144.
Introduction -- Graphs -- Properads -- Symmetric Monoidal Closed Structure on Properads -- Graphical Properads -- Properadic Graphical Category -- Properadic Graphical Sets and Infinity Properads -- Fundamental Properads of Infinity Properads -- Wheeled Properads and Graphical Wheeled Properads -- Infinity Wheeled Properads -- What's Next?.
The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter. Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.
ISBN: 9783319205472
Standard No.: 10.1007/978-3-319-20547-2doiSubjects--Topical Terms:
678206
Algebraic topology.
LC Class. No.: QA612-612.8
Dewey Class. No.: 514.2
Infinity Properads and Infinity Wheeled Properads
LDR
:02720nam a22004095i 4500
001
967747
003
DE-He213
005
20200705234934.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319205472
$9
978-3-319-20547-2
024
7
$a
10.1007/978-3-319-20547-2
$2
doi
035
$a
978-3-319-20547-2
050
4
$a
QA612-612.8
072
7
$a
PBPD
$2
bicssc
072
7
$a
MAT038000
$2
bisacsh
072
7
$a
PBPD
$2
thema
082
0 4
$a
514.2
$2
23
100
1
$a
Hackney, Philip.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1069959
245
1 0
$a
Infinity Properads and Infinity Wheeled Properads
$h
[electronic resource] /
$c
by Philip Hackney, Marcy Robertson, Donald Yau.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XV, 358 p. 213 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2147
505
0
$a
Introduction -- Graphs -- Properads -- Symmetric Monoidal Closed Structure on Properads -- Graphical Properads -- Properadic Graphical Category -- Properadic Graphical Sets and Infinity Properads -- Fundamental Properads of Infinity Properads -- Wheeled Properads and Graphical Wheeled Properads -- Infinity Wheeled Properads -- What's Next?.
520
$a
The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter. Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.
650
0
$a
Algebraic topology.
$3
678206
650
0
$a
Category theory (Mathematics).
$3
1255325
650
0
$a
Homological algebra.
$3
1255326
650
1 4
$a
Algebraic Topology.
$3
672209
650
2 4
$a
Category Theory, Homological Algebra.
$3
678397
700
1
$a
Robertson, Marcy.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1069960
700
1
$a
Yau, Donald.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
943580
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319205489
776
0 8
$i
Printed edition:
$z
9783319205465
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-319-20547-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login