語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sentic Computing = A Common-Sense-Ba...
~
Cambria, Erik.
Sentic Computing = A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Sentic Computing/ by Erik Cambria, Amir Hussain.
其他題名:
A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /
作者:
Cambria, Erik.
其他作者:
Hussain, Amir.
面頁冊數:
XXII, 176 p. 54 illus., 40 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Neurosciences. -
電子資源:
https://doi.org/10.1007/978-3-319-23654-4
ISBN:
9783319236544
Sentic Computing = A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /
Cambria, Erik.
Sentic Computing
A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /[electronic resource] :by Erik Cambria, Amir Hussain. - 1st ed. 2015. - XXII, 176 p. 54 illus., 40 illus. in color.online resource. - Socio-Affective Computing,12509-5706 ;. - Socio-Affective Computing,1.
Introduction -- SenticNet -- Sentic Patterns -- Sentic Applications -- Conclusion -- Index.
This volume presents a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web. Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain. Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed: • Sentic Computing's multi-disciplinary approach to sentiment analysis-evidenced by the concomitant use of AI, linguistics and psychology for knowledge representation and inference • Sentic Computing’s shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text • Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction and systems.
ISBN: 9783319236544
Standard No.: 10.1007/978-3-319-23654-4doiSubjects--Topical Terms:
593561
Neurosciences.
LC Class. No.: RC321-580
Dewey Class. No.: 612.8
Sentic Computing = A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /
LDR
:03025nam a22004095i 4500
001
968067
003
DE-He213
005
20200629203314.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319236544
$9
978-3-319-23654-4
024
7
$a
10.1007/978-3-319-23654-4
$2
doi
035
$a
978-3-319-23654-4
050
4
$a
RC321-580
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
072
7
$a
PSAN
$2
thema
082
0 4
$a
612.8
$2
23
100
1
$a
Cambria, Erik.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
883904
245
1 0
$a
Sentic Computing
$h
[electronic resource] :
$b
A Common-Sense-Based Framework for Concept-Level Sentiment Analysis /
$c
by Erik Cambria, Amir Hussain.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XXII, 176 p. 54 illus., 40 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Socio-Affective Computing,
$x
2509-5706 ;
$v
1
505
0
$a
Introduction -- SenticNet -- Sentic Patterns -- Sentic Applications -- Conclusion -- Index.
520
$a
This volume presents a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web. Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain. Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed: • Sentic Computing's multi-disciplinary approach to sentiment analysis-evidenced by the concomitant use of AI, linguistics and psychology for knowledge representation and inference • Sentic Computing’s shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text • Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction and systems.
650
0
$a
Neurosciences.
$3
593561
650
0
$a
Data mining.
$3
528622
650
0
$a
Semantics.
$3
555362
650
0
$a
Cognitive psychology.
$3
556029
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Cognitive Psychology.
$3
593892
700
1
$a
Hussain, Amir.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
783888
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319236537
776
0 8
$i
Printed edition:
$z
9783319236551
776
0 8
$i
Printed edition:
$z
9783319795164
830
0
$a
Socio-Affective Computing,
$x
2509-5706 ;
$v
1
$3
1263730
856
4 0
$u
https://doi.org/10.1007/978-3-319-23654-4
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入