語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical Methods for Nonlinear Part...
~
Bartels, Sören.
Numerical Methods for Nonlinear Partial Differential Equations
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Numerical Methods for Nonlinear Partial Differential Equations/ by Sören Bartels.
作者:
Bartels, Sören.
面頁冊數:
X, 393 p. 122 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Numerical analysis. -
電子資源:
https://doi.org/10.1007/978-3-319-13797-1
ISBN:
9783319137971
Numerical Methods for Nonlinear Partial Differential Equations
Bartels, Sören.
Numerical Methods for Nonlinear Partial Differential Equations
[electronic resource] /by Sören Bartels. - 1st ed. 2015. - X, 393 p. 122 illus.online resource. - Springer Series in Computational Mathematics,470179-3632 ;. - Springer Series in Computational Mathematics,48.
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
ISBN: 9783319137971
Standard No.: 10.1007/978-3-319-13797-1doiSubjects--Topical Terms:
527939
Numerical analysis.
LC Class. No.: QA297-299.4
Dewey Class. No.: 518
Numerical Methods for Nonlinear Partial Differential Equations
LDR
:02791nam a22004095i 4500
001
968069
003
DE-He213
005
20200630000407.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319137971
$9
978-3-319-13797-1
024
7
$a
10.1007/978-3-319-13797-1
$2
doi
035
$a
978-3-319-13797-1
050
4
$a
QA297-299.4
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
100
1
$a
Bartels, Sören.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1263731
245
1 0
$a
Numerical Methods for Nonlinear Partial Differential Equations
$h
[electronic resource] /
$c
by Sören Bartels.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
X, 393 p. 122 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in Computational Mathematics,
$x
0179-3632 ;
$v
47
505
0
$a
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
520
$a
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
650
0
$a
Numerical analysis.
$3
527939
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Algorithms.
$3
527865
650
0
$a
Calculus of variations.
$3
527927
650
1 4
$a
Numerical Analysis.
$3
671433
650
2 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
593942
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319137988
776
0 8
$i
Printed edition:
$z
9783319137964
776
0 8
$i
Printed edition:
$z
9783319356808
830
0
$a
Springer Series in Computational Mathematics,
$x
0179-3632 ;
$v
48
$3
1258881
856
4 0
$u
https://doi.org/10.1007/978-3-319-13797-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入