語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematics of Aperiodic Order
~
Kellendonk, Johannes.
Mathematics of Aperiodic Order
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mathematics of Aperiodic Order/ edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien.
其他作者:
Kellendonk, Johannes.
面頁冊數:
XII, 428 p. 59 illus., 17 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Convex geometry . -
電子資源:
https://doi.org/10.1007/978-3-0348-0903-0
ISBN:
9783034809030
Mathematics of Aperiodic Order
Mathematics of Aperiodic Order
[electronic resource] /edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien. - 1st ed. 2015. - XII, 428 p. 59 illus., 17 illus. in color.online resource. - Progress in Mathematics,3090743-1643 ;. - Progress in Mathematics,312.
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.
ISBN: 9783034809030
Standard No.: 10.1007/978-3-0348-0903-0doiSubjects--Topical Terms:
1255327
Convex geometry .
LC Class. No.: QA639.5-640.7
Dewey Class. No.: 516.1
Mathematics of Aperiodic Order
LDR
:03607nam a22004215i 4500
001
968456
003
DE-He213
005
20200629192547.0
007
cr nn 008mamaa
008
201211s2015 sz | s |||| 0|eng d
020
$a
9783034809030
$9
978-3-0348-0903-0
024
7
$a
10.1007/978-3-0348-0903-0
$2
doi
035
$a
978-3-0348-0903-0
050
4
$a
QA639.5-640.7
050
4
$a
QA640.7-640.77
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012020
$2
bisacsh
072
7
$a
PBMW
$2
thema
072
7
$a
PBD
$2
thema
082
0 4
$a
516.1
$2
23
245
1 0
$a
Mathematics of Aperiodic Order
$h
[electronic resource] /
$c
edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien.
250
$a
1st ed. 2015.
264
1
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhäuser,
$c
2015.
300
$a
XII, 428 p. 59 illus., 17 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Progress in Mathematics,
$x
0743-1643 ;
$v
309
505
0
$a
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
520
$a
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.
650
0
$a
Convex geometry .
$3
1255327
650
0
$a
Discrete geometry.
$3
672137
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
0
$a
Operator theory.
$3
527910
650
0
$a
Number theory.
$3
527883
650
0
$a
Global analysis (Mathematics).
$3
1255807
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
1 4
$a
Convex and Discrete Geometry.
$3
672138
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
650
2 4
$a
Operator Theory.
$3
672127
650
2 4
$a
Number Theory.
$3
672023
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
672519
700
1
$a
Kellendonk, Johannes.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1264079
700
1
$a
Lenz, Daniel.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
787452
700
1
$a
Savinien, Jean.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1264080
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783034809047
776
0 8
$i
Printed edition:
$z
9783034809023
830
0
$a
Progress in Mathematics,
$x
0743-1643 ;
$v
312
$3
1258196
856
4 0
$u
https://doi.org/10.1007/978-3-0348-0903-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入