語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Acoustic Modeling for Emotion Recogn...
~
SpringerLink (Online service)
Acoustic Modeling for Emotion Recognition
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Acoustic Modeling for Emotion Recognition/ by Koteswara Rao Anne, Swarna Kuchibhotla, Hima Deepthi Vankayalapati.
作者:
Anne, Koteswara Rao.
其他作者:
Kuchibhotla, Swarna.
面頁冊數:
VII, 66 p. 24 illus., 17 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Signal processing. -
電子資源:
https://doi.org/10.1007/978-3-319-15530-2
ISBN:
9783319155302
Acoustic Modeling for Emotion Recognition
Anne, Koteswara Rao.
Acoustic Modeling for Emotion Recognition
[electronic resource] /by Koteswara Rao Anne, Swarna Kuchibhotla, Hima Deepthi Vankayalapati. - 1st ed. 2015. - VII, 66 p. 24 illus., 17 illus. in color.online resource. - SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,2191-737X. - SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,.
Introduction -- Emotion Recognition using Prosodic features -- Emotion Recognition using Spectral features -- Emotional Speech Corpora -- Classification Models -- Comparative Analysis of Classifiers in emotion recognition -- Summary and Conclusions.
This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications – gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques.
ISBN: 9783319155302
Standard No.: 10.1007/978-3-319-15530-2doiSubjects--Topical Terms:
561459
Signal processing.
LC Class. No.: TK5102.9
Dewey Class. No.: 621.382
Acoustic Modeling for Emotion Recognition
LDR
:02444nam a22004215i 4500
001
969115
003
DE-He213
005
20200701171703.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319155302
$9
978-3-319-15530-2
024
7
$a
10.1007/978-3-319-15530-2
$2
doi
035
$a
978-3-319-15530-2
050
4
$a
TK5102.9
050
4
$a
TA1637-1638
072
7
$a
TTBM
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
TTBM
$2
thema
072
7
$a
UYS
$2
thema
082
0 4
$a
621.382
$2
23
100
1
$a
Anne, Koteswara Rao.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1264700
245
1 0
$a
Acoustic Modeling for Emotion Recognition
$h
[electronic resource] /
$c
by Koteswara Rao Anne, Swarna Kuchibhotla, Hima Deepthi Vankayalapati.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
VII, 66 p. 24 illus., 17 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
$x
2191-737X
505
0
$a
Introduction -- Emotion Recognition using Prosodic features -- Emotion Recognition using Spectral features -- Emotional Speech Corpora -- Classification Models -- Comparative Analysis of Classifiers in emotion recognition -- Summary and Conclusions.
520
$a
This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications – gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques.
650
0
$a
Signal processing.
$3
561459
650
0
$a
Image processing.
$3
557495
650
0
$a
Speech processing systems.
$3
564428
650
0
$a
Computational linguistics.
$3
555811
650
0
$a
User interfaces (Computer systems).
$3
1253526
650
0
$a
Acoustics.
$3
670692
650
1 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Computational Linguistics.
$3
670080
650
2 4
$a
User Interfaces and Human Computer Interaction.
$3
669793
700
1
$a
Kuchibhotla, Swarna.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1264701
700
1
$a
Vankayalapati, Hima Deepthi.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1264702
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319155319
776
0 8
$i
Printed edition:
$z
9783319155296
830
0
$a
SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
$x
2191-737X
$3
1255129
856
4 0
$u
https://doi.org/10.1007/978-3-319-15530-2
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入