語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lectures on the Nearest Neighbor Method
~
Biau, Gérard.
Lectures on the Nearest Neighbor Method
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Lectures on the Nearest Neighbor Method/ by Gérard Biau, Luc Devroye.
作者:
Biau, Gérard.
其他作者:
Devroye, Luc.
面頁冊數:
IX, 290 p. 4 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Probabilities. -
電子資源:
https://doi.org/10.1007/978-3-319-25388-6
ISBN:
9783319253886
Lectures on the Nearest Neighbor Method
Biau, Gérard.
Lectures on the Nearest Neighbor Method
[electronic resource] /by Gérard Biau, Luc Devroye. - 1st ed. 2015. - IX, 290 p. 4 illus. in color.online resource. - Springer Series in the Data Sciences,2365-5674. - Springer Series in the Data Sciences,.
Part I: Density Estimation -- Order Statistics and Nearest Neighbors -- The Expected Nearest Neighbor Distance -- The k-nearest Neighbor Density Estimate -- Uniform Consistency -- Weighted k-nearest neighbor density estimates.- Local Behavior -- Entropy Estimation -- Part II: Regression Estimation -- The Nearest Neighbor Regression Function Estimate -- The 1-nearest Neighbor Regression Function Estimate -- LP-consistency and Stone's Theorem -- Pointwise Consistency -- Uniform Consistency -- Advanced Properties of Uniform Order Statistics -- Rates of Convergence -- Regression: The Noisless Case -- The Choice of a Nearest Neighbor Estimate -- Part III: Supervised Classification -- Basics of Classification -- The 1-nearest Neighbor Classification Rule -- The Nearest Neighbor Classification Rule. Appendix -- Index.
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal). .
ISBN: 9783319253886
Standard No.: 10.1007/978-3-319-25388-6doiSubjects--Topical Terms:
527847
Probabilities.
LC Class. No.: QA273.A1-274.9
Dewey Class. No.: 519.2
Lectures on the Nearest Neighbor Method
LDR
:02814nam a22004335i 4500
001
969593
003
DE-He213
005
20200705025903.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319253886
$9
978-3-319-25388-6
024
7
$a
10.1007/978-3-319-25388-6
$2
doi
035
$a
978-3-319-25388-6
050
4
$a
QA273.A1-274.9
050
4
$a
QA274-274.9
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
100
1
$a
Biau, Gérard.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1265147
245
1 0
$a
Lectures on the Nearest Neighbor Method
$h
[electronic resource] /
$c
by Gérard Biau, Luc Devroye.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
IX, 290 p. 4 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in the Data Sciences,
$x
2365-5674
505
0
$a
Part I: Density Estimation -- Order Statistics and Nearest Neighbors -- The Expected Nearest Neighbor Distance -- The k-nearest Neighbor Density Estimate -- Uniform Consistency -- Weighted k-nearest neighbor density estimates.- Local Behavior -- Entropy Estimation -- Part II: Regression Estimation -- The Nearest Neighbor Regression Function Estimate -- The 1-nearest Neighbor Regression Function Estimate -- LP-consistency and Stone's Theorem -- Pointwise Consistency -- Uniform Consistency -- Advanced Properties of Uniform Order Statistics -- Rates of Convergence -- Regression: The Noisless Case -- The Choice of a Nearest Neighbor Estimate -- Part III: Supervised Classification -- Basics of Classification -- The 1-nearest Neighbor Classification Rule -- The Nearest Neighbor Classification Rule. Appendix -- Index.
520
$a
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal). .
650
0
$a
Probabilities.
$3
527847
650
0
$a
Pattern recognition.
$3
1253525
650
0
$a
Statistics .
$3
1253516
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
700
1
$a
Devroye, Luc.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1070508
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319253862
776
0 8
$i
Printed edition:
$z
9783319253879
776
0 8
$i
Printed edition:
$z
9783319797823
830
0
$a
Springer Series in the Data Sciences,
$x
2365-5674
$3
1265148
856
4 0
$u
https://doi.org/10.1007/978-3-319-25388-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入