語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Höhere Mathematik in Rezepten = Begr...
~
Karpfinger, Christian.
Höhere Mathematik in Rezepten = Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Höhere Mathematik in Rezepten/ von Christian Karpfinger.
其他題名:
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten /
作者:
Karpfinger, Christian.
面頁冊數:
XXVI, 930 S. 250 Abb.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-662-43811-4
ISBN:
9783662438114
Höhere Mathematik in Rezepten = Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten /
Karpfinger, Christian.
Höhere Mathematik in Rezepten
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten /[electronic resource] :von Christian Karpfinger. - 2nd ed. 2015. - XXVI, 930 S. 250 Abb.online resource.
Vorwort -- 1 Sprechweisen, Symbole und Mengen -- 2 Die natürlichen, ganzen und rationalen Zahlen -- 3 Die reellen Zahlen -- 4 Maschinenzahlen -- 5 Polynome -- 6 Trigonometrische Funktionen -- 7 Komplexe Zahlen - Kartesische Koordinaten -- 8 Komplexe Zahlen – Polarkoordinaten -- 9 Lineare Gleichungssysteme -- 10 Rechnen mit Matrizen -- 11 LR-Zerlegung einer Matrix -- 12 Die Determinante -- 13 Vektorräume -- 14 Erzeugendensysteme und lineare (Un-)Abhängigkeit -- 15 Basen von Vektorräumen -- 16 Orthogonalität I -- 17 Orthogonalität II -- 18 Das lineare Ausgleichsproblem -- 19 Die QR-Zerlegung einer Matrix -- 20 Folgen -- 21 Berechnung von Grenzwerten von Folgen -- 22 Reihen -- 23 Abbildungen -- 24 Potenzreihen -- 25 Grenzwerte und Stetigkeit -- 26 Differentiation -- 27 Anwendungen der Differentialrechnung I -- 28 Anwendungen der Differentialrechnung II -- 29 Polynom- und Splineinterpolation -- 30 Integration I -- 31 Integration II -- 32 Uneigentliche Integrale -- 33 Separierbare und lineare Differentialgleichungen 1. Ordnung -- 34 Lineare Differentialgleichungen mit konstanten Koeffizienten -- 35 Einige besondere Typen von Differentialgleichungen -- 36 Numerik gewöhnlicher Differentialgleichungen I -- 37 Lineare Abbildungen und Darstellungsmatrizen -- 38 Basistransformation -- 39 Diagonalisierung - Eigenwerte und Eigenvektoren -- 40 Numerische Berechnung von Eigenwerten und Eigenvektoren -- 41 Quadriken -- 42 Schurzerlegung und Singulärwertzerlegung -- 43 Die Jordannormalform I -- 44 Die Jordannormalform II -- 45 Definitheit und Matrixnormen -- 46 Funktionen mehrerer Veränderlicher -- 47 Partielle Differentiation - Gradient, Hessematrix, Jacobimatrix -- 48 Anwendungen der partiellen Ableitungen -- 49 Extremwertbestimmung -- 50 Extremwertbestimmung unter Nebenbedingungen -- 51 Totale Differentiation, Differentialoperatoren -- 52 Implizite Funktionen -- 53 Koordinatentransformationen -- 54 Kurven I -- 55 Kurven II -- 56 Kurvenintegrale -- 57 Gradientenfelder -- 58 Bereichsintegrale -- 59 Die Transformationsformel -- 60 Flächen und Flächenintegrale -- 61 Integralsätze I -- 62 Integralsätze II -- 63 Allgemeines zu Differentialgleichungen -- 64 Die exakte Differentialgleichung -- 65 Lineare Differentialgleichungssysteme I -- 66 Lineare Differentialgleichungssysteme II -- 67 Lineare Differentialgleichungssysteme II -- 68 Randwertprobleme -- 69 Grundbegriffe der Numerik -- 70 Fixpunktiteration -- 71 Iterative Verfahren für lineare Gleichungssysteme -- 72 Optimierung -- 73 Numerik gewöhnlicher Differentialgleichungen II -- 74 Fourierreihen - Berechnung der Fourierkoeffzienten -- 75 Fourierreihen - Hintergründe, Sätze und Anwendung -- 76 Fouriertransformation I -- 77 Fouriertransformation II -- 78 Diskrete Fouriertransformation -- 79 Die Laplacetransformation -- 80 Holomorphe Funktionen -- 81 Komplexe Integration -- 82 Laurentreihen -- 83 Der Residuenkalkül -- 84 Konforme Abbildungen -- 85 Harmonische Funktionen und das Dirichlet'sche Randwertproblem -- 86 Partielle Differentialgleichungen 1. Ordnung -- 87 Partielle Differentialgleichungen 2. Ordnung – Allgemeines -- 88 Die Laplace- bzw. Poissongleichung -- 89 Die Wärmeleitungsgleichung -- 90 Die Wellengleichung -- 91 Lösen von pDGLen mit Fourier- und Laplacetransformation -- Index.
Haben Sie schon einmal ein 3-Gänge-Menü anhand eines Rezepts gekocht? Das klappt im Allgemeinen ganz gut, auch wenn man kein großer Koch ist. Was das mit Mathematik zu tun hat? Na ja, man kann auch viele mathematische Probleme rezeptartig lösen: Brauchen Sie die Lösung einer Riccati'schen Differenzialgleichung oder die Singulärwertzerlegung einer Matrix? Schlagen Sie in diesem Buch nach, hier finden Sie ein Rezept dazu. Rezepte gibt es zu Problemen aus der Analysis in einer und mehreren Variablen, linearen Algebra, Vektoranalysis, Theorie zu Differenzialgleichungen, gewöhnlich und partiell, Theorie der Integraltransformationen, Funktionentheorie. Wir haben versucht, diese Rezepte so gut und auch so verständlich wie möglich in diesem Buch zusammenzufassen. Vielfach wird davon gesprochen, dass man Höhere Mathematik verstehen muss, um sie anwenden zu können. Wir zeigen in diesem Buch, dass das Verständnis auch ganz von selbst durch das Tun kommt: Kein Mensch lernt die Grammatik einer Sprache von vorne bis hinten, wenn er eine Sprache lernen will. Man lernt eine Sprache, indem man sich ein bisschen über die Grammatik informiert und dann loslegt; man muss sprechen, Fehler machen, auf Fehler hingewiesen werden, Beispielsätze und Rezepte kennen, häppchenweise Themen erarbeiten, dann klappt es. In der Höheren Mathematik ist es nicht anders. Weitere Besonderheiten dieses Buches sind: Die Einteilung der Höheren Mathematik in ca. 100 etwa gleich lange Kapitel. Jedes Kapitel behandelt etwa den Stoff einer 90-minütigen Vorlesung. Zahlreiche Beispiele. Viele Aufgaben, die Lösungen dazu findet man auf der Website zu diesem Buch bzw. in dem dazu gehörigen Arbeitsbuch. Viele Probleme der Höheren Mathematik lassen sich mit dem Computer lösen. Wir geben stets an, wie es mit MATLAB® funktioniert. Aufgrund der übersichtlichen Darstellung kann das Buch auch als kommentierte und mit zahlreichen Beispielen unterlegte Formelsammlung benutzt werden. Für die vorliegende 2. Auflage wurde das Buch vollständig durchgesehen und um ein Kapitel zur Lösung partieller Differentialgleichungen mittels Integraltransformationen, um einen Abschnitt zur numerischen Lösung der Wellengleichung sowie um etliche zusätzliche Aufgaben ergänzt. PD Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.
ISBN: 9783662438114
Standard No.: 10.1007/978-3-662-43811-4doiSubjects--Topical Terms:
527692
Mathematics.
LC Class. No.: QA1-939
Dewey Class. No.: 510
Höhere Mathematik in Rezepten = Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten /
LDR
:06941nam a22003495i 4500
001
969960
003
DE-He213
005
20200713170602.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|ger d
020
$a
9783662438114
$9
978-3-662-43811-4
024
7
$a
10.1007/978-3-662-43811-4
$2
doi
035
$a
978-3-662-43811-4
050
4
$a
QA1-939
072
7
$a
PB
$2
bicssc
072
7
$a
MAT000000
$2
bisacsh
072
7
$a
PB
$2
thema
082
0 4
$a
510
$2
23
100
1
$a
Karpfinger, Christian.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1262856
245
1 0
$a
Höhere Mathematik in Rezepten
$h
[electronic resource] :
$b
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten /
$c
von Christian Karpfinger.
250
$a
2nd ed. 2015.
264
1
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer Spektrum,
$c
2015.
300
$a
XXVI, 930 S. 250 Abb.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Vorwort -- 1 Sprechweisen, Symbole und Mengen -- 2 Die natürlichen, ganzen und rationalen Zahlen -- 3 Die reellen Zahlen -- 4 Maschinenzahlen -- 5 Polynome -- 6 Trigonometrische Funktionen -- 7 Komplexe Zahlen - Kartesische Koordinaten -- 8 Komplexe Zahlen – Polarkoordinaten -- 9 Lineare Gleichungssysteme -- 10 Rechnen mit Matrizen -- 11 LR-Zerlegung einer Matrix -- 12 Die Determinante -- 13 Vektorräume -- 14 Erzeugendensysteme und lineare (Un-)Abhängigkeit -- 15 Basen von Vektorräumen -- 16 Orthogonalität I -- 17 Orthogonalität II -- 18 Das lineare Ausgleichsproblem -- 19 Die QR-Zerlegung einer Matrix -- 20 Folgen -- 21 Berechnung von Grenzwerten von Folgen -- 22 Reihen -- 23 Abbildungen -- 24 Potenzreihen -- 25 Grenzwerte und Stetigkeit -- 26 Differentiation -- 27 Anwendungen der Differentialrechnung I -- 28 Anwendungen der Differentialrechnung II -- 29 Polynom- und Splineinterpolation -- 30 Integration I -- 31 Integration II -- 32 Uneigentliche Integrale -- 33 Separierbare und lineare Differentialgleichungen 1. Ordnung -- 34 Lineare Differentialgleichungen mit konstanten Koeffizienten -- 35 Einige besondere Typen von Differentialgleichungen -- 36 Numerik gewöhnlicher Differentialgleichungen I -- 37 Lineare Abbildungen und Darstellungsmatrizen -- 38 Basistransformation -- 39 Diagonalisierung - Eigenwerte und Eigenvektoren -- 40 Numerische Berechnung von Eigenwerten und Eigenvektoren -- 41 Quadriken -- 42 Schurzerlegung und Singulärwertzerlegung -- 43 Die Jordannormalform I -- 44 Die Jordannormalform II -- 45 Definitheit und Matrixnormen -- 46 Funktionen mehrerer Veränderlicher -- 47 Partielle Differentiation - Gradient, Hessematrix, Jacobimatrix -- 48 Anwendungen der partiellen Ableitungen -- 49 Extremwertbestimmung -- 50 Extremwertbestimmung unter Nebenbedingungen -- 51 Totale Differentiation, Differentialoperatoren -- 52 Implizite Funktionen -- 53 Koordinatentransformationen -- 54 Kurven I -- 55 Kurven II -- 56 Kurvenintegrale -- 57 Gradientenfelder -- 58 Bereichsintegrale -- 59 Die Transformationsformel -- 60 Flächen und Flächenintegrale -- 61 Integralsätze I -- 62 Integralsätze II -- 63 Allgemeines zu Differentialgleichungen -- 64 Die exakte Differentialgleichung -- 65 Lineare Differentialgleichungssysteme I -- 66 Lineare Differentialgleichungssysteme II -- 67 Lineare Differentialgleichungssysteme II -- 68 Randwertprobleme -- 69 Grundbegriffe der Numerik -- 70 Fixpunktiteration -- 71 Iterative Verfahren für lineare Gleichungssysteme -- 72 Optimierung -- 73 Numerik gewöhnlicher Differentialgleichungen II -- 74 Fourierreihen - Berechnung der Fourierkoeffzienten -- 75 Fourierreihen - Hintergründe, Sätze und Anwendung -- 76 Fouriertransformation I -- 77 Fouriertransformation II -- 78 Diskrete Fouriertransformation -- 79 Die Laplacetransformation -- 80 Holomorphe Funktionen -- 81 Komplexe Integration -- 82 Laurentreihen -- 83 Der Residuenkalkül -- 84 Konforme Abbildungen -- 85 Harmonische Funktionen und das Dirichlet'sche Randwertproblem -- 86 Partielle Differentialgleichungen 1. Ordnung -- 87 Partielle Differentialgleichungen 2. Ordnung – Allgemeines -- 88 Die Laplace- bzw. Poissongleichung -- 89 Die Wärmeleitungsgleichung -- 90 Die Wellengleichung -- 91 Lösen von pDGLen mit Fourier- und Laplacetransformation -- Index.
520
$a
Haben Sie schon einmal ein 3-Gänge-Menü anhand eines Rezepts gekocht? Das klappt im Allgemeinen ganz gut, auch wenn man kein großer Koch ist. Was das mit Mathematik zu tun hat? Na ja, man kann auch viele mathematische Probleme rezeptartig lösen: Brauchen Sie die Lösung einer Riccati'schen Differenzialgleichung oder die Singulärwertzerlegung einer Matrix? Schlagen Sie in diesem Buch nach, hier finden Sie ein Rezept dazu. Rezepte gibt es zu Problemen aus der Analysis in einer und mehreren Variablen, linearen Algebra, Vektoranalysis, Theorie zu Differenzialgleichungen, gewöhnlich und partiell, Theorie der Integraltransformationen, Funktionentheorie. Wir haben versucht, diese Rezepte so gut und auch so verständlich wie möglich in diesem Buch zusammenzufassen. Vielfach wird davon gesprochen, dass man Höhere Mathematik verstehen muss, um sie anwenden zu können. Wir zeigen in diesem Buch, dass das Verständnis auch ganz von selbst durch das Tun kommt: Kein Mensch lernt die Grammatik einer Sprache von vorne bis hinten, wenn er eine Sprache lernen will. Man lernt eine Sprache, indem man sich ein bisschen über die Grammatik informiert und dann loslegt; man muss sprechen, Fehler machen, auf Fehler hingewiesen werden, Beispielsätze und Rezepte kennen, häppchenweise Themen erarbeiten, dann klappt es. In der Höheren Mathematik ist es nicht anders. Weitere Besonderheiten dieses Buches sind: Die Einteilung der Höheren Mathematik in ca. 100 etwa gleich lange Kapitel. Jedes Kapitel behandelt etwa den Stoff einer 90-minütigen Vorlesung. Zahlreiche Beispiele. Viele Aufgaben, die Lösungen dazu findet man auf der Website zu diesem Buch bzw. in dem dazu gehörigen Arbeitsbuch. Viele Probleme der Höheren Mathematik lassen sich mit dem Computer lösen. Wir geben stets an, wie es mit MATLAB® funktioniert. Aufgrund der übersichtlichen Darstellung kann das Buch auch als kommentierte und mit zahlreichen Beispielen unterlegte Formelsammlung benutzt werden. Für die vorliegende 2. Auflage wurde das Buch vollständig durchgesehen und um ein Kapitel zur Lösung partieller Differentialgleichungen mittels Integraltransformationen, um einen Abschnitt zur numerischen Lösung der Wellengleichung sowie um etliche zusätzliche Aufgaben ergänzt. PD Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.
650
0
$a
Mathematics.
$3
527692
650
0
$a
Mathematical analysis.
$3
527926
650
0
$a
Analysis (Mathematics).
$3
1253570
650
0
$a
Matrix theory.
$3
1023862
650
0
$a
Algebra.
$2
gtt
$3
579870
650
0
$a
Differential equations.
$3
527664
650
0
$a
Partial differential equations.
$3
1102982
650
1 4
$a
Mathematics, general.
$3
669694
650
2 4
$a
Analysis.
$3
669490
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
672090
650
2 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Partial Differential Equations.
$3
671119
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783662438107
856
4 0
$u
https://doi.org/10.1007/978-3-662-43811-4
912
$a
ZDB-2-SNA
950
$a
Life Science and Basic Disciplines (German Language) (SpringerNature-11777)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入