語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning Meets Medical Imagi...
~
Bhatia, Kanwal.
Machine Learning Meets Medical Imaging = First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine Learning Meets Medical Imaging/ edited by Kanwal Bhatia, Herve Lombaert.
其他題名:
First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers /
其他作者:
Bhatia, Kanwal.
面頁冊數:
X, 105 p. 31 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Optical data processing. -
電子資源:
https://doi.org/10.1007/978-3-319-27929-9
ISBN:
9783319279299
Machine Learning Meets Medical Imaging = First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers /
Machine Learning Meets Medical Imaging
First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers /[electronic resource] :edited by Kanwal Bhatia, Herve Lombaert. - 1st ed. 2015. - X, 105 p. 31 illus. in color.online resource. - Image Processing, Computer Vision, Pattern Recognition, and Graphics ;9487. - Image Processing, Computer Vision, Pattern Recognition, and Graphics ;9219.
Retrospective motion correction of magnitude-input MR images -- Automatic Brain Localization in Fetal MRI Using Superpixel Graphs -- Learning Deep Temporal Representations for fMRI Brain Decoding -- Modelling Non-Stationary and Non-Separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution -- Improving MRI brain image classification with anatomical regional kernels -- A Graph Based Classification Method for Multiple Sclerosis Clinical Form Using Support Vector Machine -- Classification of Alzheimer’s Disease using Discriminant Manifolds of Hippocampus Shapes -- Transfer Learning for Prostate Cancer Mapping Based on Multicentric MR imaging databases.
Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} This book constitutes the revised selected papers of the First International Workshop on Machine Learning in Medical Imaging, MLMMI 2015, held in July 2015 in Lille, France, in conjunction with the 32nd International Conference on Machine Learning, ICML 2015. The 10 papers presented in this volume were carefully reviewed and selected for inclusion in the book. The papers communicate the specific needs and nuances of medical imaging to the machine learning community while exposing the medical imaging community to current trends in machine learning. .
ISBN: 9783319279299
Standard No.: 10.1007/978-3-319-27929-9doiSubjects--Topical Terms:
639187
Optical data processing.
LC Class. No.: TA1630-1650
Dewey Class. No.: 006.6
Machine Learning Meets Medical Imaging = First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers /
LDR
:03565nam a22004335i 4500
001
970300
003
DE-He213
005
20200704100044.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319279299
$9
978-3-319-27929-9
024
7
$a
10.1007/978-3-319-27929-9
$2
doi
035
$a
978-3-319-27929-9
050
4
$a
TA1630-1650
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.6
$2
23
082
0 4
$a
006.37
$2
23
245
1 0
$a
Machine Learning Meets Medical Imaging
$h
[electronic resource] :
$b
First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers /
$c
edited by Kanwal Bhatia, Herve Lombaert.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
X, 105 p. 31 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
$v
9487
505
0
$a
Retrospective motion correction of magnitude-input MR images -- Automatic Brain Localization in Fetal MRI Using Superpixel Graphs -- Learning Deep Temporal Representations for fMRI Brain Decoding -- Modelling Non-Stationary and Non-Separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution -- Improving MRI brain image classification with anatomical regional kernels -- A Graph Based Classification Method for Multiple Sclerosis Clinical Form Using Support Vector Machine -- Classification of Alzheimer’s Disease using Discriminant Manifolds of Hippocampus Shapes -- Transfer Learning for Prostate Cancer Mapping Based on Multicentric MR imaging databases.
520
$a
Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} This book constitutes the revised selected papers of the First International Workshop on Machine Learning in Medical Imaging, MLMMI 2015, held in July 2015 in Lille, France, in conjunction with the 32nd International Conference on Machine Learning, ICML 2015. The 10 papers presented in this volume were carefully reviewed and selected for inclusion in the book. The papers communicate the specific needs and nuances of medical imaging to the machine learning community while exposing the medical imaging community to current trends in machine learning. .
650
0
$a
Optical data processing.
$3
639187
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Pattern recognition.
$3
1253525
650
0
$a
Algorithms.
$3
527865
650
0
$a
Computers.
$3
565115
650
1 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
593923
650
2 4
$a
Computation by Abstract Devices.
$3
669792
700
1
$a
Bhatia, Kanwal.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1265886
700
1
$a
Lombaert, Herve.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1070382
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319279282
776
0 8
$i
Printed edition:
$z
9783319279305
830
0
$a
Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
$v
9219
$3
1253644
856
4 0
$u
https://doi.org/10.1007/978-3-319-27929-9
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
912
$a
ZDB-2-LNC
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入