語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An Introduction to Machine Learning
~
SpringerLink (Online service)
An Introduction to Machine Learning
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
An Introduction to Machine Learning/ by Miroslav Kubat.
作者:
Kubat, Miroslav.
面頁冊數:
XIII, 291 p. 71 illus., 2 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-20010-1
ISBN:
9783319200101
An Introduction to Machine Learning
Kubat, Miroslav.
An Introduction to Machine Learning
[electronic resource] /by Miroslav Kubat. - 1st ed. 2015. - XIII, 291 p. 71 illus., 2 illus. in color.online resource.
A Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation.-Statistical Significance -- The Genetic Algorithm -- Reinforcement learning.
This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.
ISBN: 9783319200101
Standard No.: 10.1007/978-3-319-20010-1doiSubjects--Topical Terms:
559380
Artificial intelligence.
LC Class. No.: Q334-342
Dewey Class. No.: 006.3
An Introduction to Machine Learning
LDR
:02429nam a22003975i 4500
001
970318
003
DE-He213
005
20200701163133.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319200101
$9
978-3-319-20010-1
024
7
$a
10.1007/978-3-319-20010-1
$2
doi
035
$a
978-3-319-20010-1
050
4
$a
Q334-342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Kubat, Miroslav.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1067018
245
1 3
$a
An Introduction to Machine Learning
$h
[electronic resource] /
$c
by Miroslav Kubat.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XIII, 291 p. 71 illus., 2 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
A Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation.-Statistical Significance -- The Genetic Algorithm -- Reinforcement learning.
520
$a
This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computer simulation.
$3
560190
650
0
$a
Information storage and retrieval.
$3
1069252
650
0
$a
Pattern recognition.
$3
1253525
650
1 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Information Storage and Retrieval.
$3
593926
650
2 4
$a
Pattern Recognition.
$3
669796
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319200095
776
0 8
$i
Printed edition:
$z
9783319200118
776
0 8
$i
Printed edition:
$z
9783319348865
856
4 0
$u
https://doi.org/10.1007/978-3-319-20010-1
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入