語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Plant Biology and Biotechnology = Vo...
~
Krishnamurthy, K. V.
Plant Biology and Biotechnology = Volume II: Plant Genomics and Biotechnology /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Plant Biology and Biotechnology/ edited by Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, K. V. Krishnamurthy.
其他題名:
Volume II: Plant Genomics and Biotechnology /
其他作者:
Bahadur, Bir.
面頁冊數:
XXVI, 768 p. 110 illus., 90 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Plant genetics. -
電子資源:
https://doi.org/10.1007/978-81-322-2283-5
ISBN:
9788132222835
Plant Biology and Biotechnology = Volume II: Plant Genomics and Biotechnology /
Plant Biology and Biotechnology
Volume II: Plant Genomics and Biotechnology /[electronic resource] :edited by Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, K. V. Krishnamurthy. - 1st ed. 2015. - XXVI, 768 p. 110 illus., 90 illus. in color.online resource.
1. Arabidopsis thaliana: A Model for Plant Research -- 2. Microalgae in Biotechnological Application: A Commercial Approach -- 3. Application of Biotechnology and Bioinformatics Tools in Plant-Fungal Interactions -- 4. Genetic Markers, Trait Mapping and Marker-Assisted Selection in Plant Breeding -- 5. Doubled Haploid Platform - An Accelerated Breeding Approach for Crop Improvement -- 6. Plant Molecular Biology Applications in Horticulture: An Overview -- 7. A History of Genomic Structures: The Big Picture -- 8. Organellar Genomes of Flowering Plants -- 9. DNA Fingerprinting Techniques for Plant Identification -- 10. Functional Genomics -- 11. Translating the Genome for Translational Research: Proteomics in Agriculture -- 12. Epigenetic Mechanisms in Plants: An Overview -- 13. Bioinformatics: Application to Genomics -- 14. Systems Biology: A New Frontier in Science -- 15. Somatic Embryogenesis -- 16. Micropropagation of Plants -- 17. Efficacy of Biotechnological Approaches to Raise Wide Sexual Hybrids -- 18. Hybrid Embryo Rescue in Crop Improvement -- 19. Applications of Triploids in Agriculture -- 20. Improving Secondary Metabolite Production in Plant Tissue Cultures -- 21. Somaclonal Variation in Micropropagated Crops -- 22. In vitro Conservation of Plant Germplasm -- 23. Gene Banking for ex situ Conservation of Plant Genetic Resources -- 24. Conservation and Management of Endemic and Threatened Plant Species in India- An Overview -- 25. Biotechnological Approaches in Improvement of Spices – A Review -- 26. Metabolic Engineering in Plants -- 27. Genetically Modified Crops -- 28. Engineering of Plants for the Production of Commercially Important Products: Approaches and Accomplishments -- 29. Genetic Engineering Strategies for Abiotic Stress Tolerance in Plants -- 30. Genetic Engineering Strategies for Biotic Stress Tolerance in Plants -- 31. RNAi for Crop Improvement -- 32. Plant Micro RNAs: Biogenesis, Functions and Applications -- 33. Environmental Biotechnology: A Quest for Sustainable Solutions -- 34. Phytoremediation: General Account and Its Application -- 35. Marine Biotechnology: Potentials of Marine Microbes and Algae with Reference to Pharmacological and Commercial Values -- 36. Desert Plant Biotechnology: Jojoba, Date Palm and Acacia Species -- 37. Rural Biotechnology in Transforming Agriculture and Rural Livelihood.
Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices – the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book’s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.
ISBN: 9788132222835
Standard No.: 10.1007/978-81-322-2283-5doiSubjects--Topical Terms:
743629
Plant genetics.
LC Class. No.: QH433
Dewey Class. No.: 581.35
Plant Biology and Biotechnology = Volume II: Plant Genomics and Biotechnology /
LDR
:07798nam a22004095i 4500
001
970327
003
DE-He213
005
20200701002554.0
007
cr nn 008mamaa
008
201211s2015 ii | s |||| 0|eng d
020
$a
9788132222835
$9
978-81-322-2283-5
024
7
$a
10.1007/978-81-322-2283-5
$2
doi
035
$a
978-81-322-2283-5
050
4
$a
QH433
072
7
$a
PST
$2
bicssc
072
7
$a
SCI011000
$2
bisacsh
072
7
$a
PST
$2
thema
072
7
$a
PSAK
$2
thema
082
0 4
$a
581.35
$2
23
245
1 0
$a
Plant Biology and Biotechnology
$h
[electronic resource] :
$b
Volume II: Plant Genomics and Biotechnology /
$c
edited by Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, K. V. Krishnamurthy.
250
$a
1st ed. 2015.
264
1
$a
New Delhi :
$b
Springer India :
$b
Imprint: Springer,
$c
2015.
300
$a
XXVI, 768 p. 110 illus., 90 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Arabidopsis thaliana: A Model for Plant Research -- 2. Microalgae in Biotechnological Application: A Commercial Approach -- 3. Application of Biotechnology and Bioinformatics Tools in Plant-Fungal Interactions -- 4. Genetic Markers, Trait Mapping and Marker-Assisted Selection in Plant Breeding -- 5. Doubled Haploid Platform - An Accelerated Breeding Approach for Crop Improvement -- 6. Plant Molecular Biology Applications in Horticulture: An Overview -- 7. A History of Genomic Structures: The Big Picture -- 8. Organellar Genomes of Flowering Plants -- 9. DNA Fingerprinting Techniques for Plant Identification -- 10. Functional Genomics -- 11. Translating the Genome for Translational Research: Proteomics in Agriculture -- 12. Epigenetic Mechanisms in Plants: An Overview -- 13. Bioinformatics: Application to Genomics -- 14. Systems Biology: A New Frontier in Science -- 15. Somatic Embryogenesis -- 16. Micropropagation of Plants -- 17. Efficacy of Biotechnological Approaches to Raise Wide Sexual Hybrids -- 18. Hybrid Embryo Rescue in Crop Improvement -- 19. Applications of Triploids in Agriculture -- 20. Improving Secondary Metabolite Production in Plant Tissue Cultures -- 21. Somaclonal Variation in Micropropagated Crops -- 22. In vitro Conservation of Plant Germplasm -- 23. Gene Banking for ex situ Conservation of Plant Genetic Resources -- 24. Conservation and Management of Endemic and Threatened Plant Species in India- An Overview -- 25. Biotechnological Approaches in Improvement of Spices – A Review -- 26. Metabolic Engineering in Plants -- 27. Genetically Modified Crops -- 28. Engineering of Plants for the Production of Commercially Important Products: Approaches and Accomplishments -- 29. Genetic Engineering Strategies for Abiotic Stress Tolerance in Plants -- 30. Genetic Engineering Strategies for Biotic Stress Tolerance in Plants -- 31. RNAi for Crop Improvement -- 32. Plant Micro RNAs: Biogenesis, Functions and Applications -- 33. Environmental Biotechnology: A Quest for Sustainable Solutions -- 34. Phytoremediation: General Account and Its Application -- 35. Marine Biotechnology: Potentials of Marine Microbes and Algae with Reference to Pharmacological and Commercial Values -- 36. Desert Plant Biotechnology: Jojoba, Date Palm and Acacia Species -- 37. Rural Biotechnology in Transforming Agriculture and Rural Livelihood.
520
$a
Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices – the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book’s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.
650
0
$a
Plant genetics.
$3
743629
650
0
$a
Plant breeding.
$3
568050
650
0
$a
Developmental biology.
$3
669036
650
0
$a
Plant physiology.
$3
889548
650
0
$a
Transgenic organisms.
$3
862278
650
1 4
$a
Plant Genetics and Genomics.
$3
1171617
650
2 4
$a
Plant Breeding/Biotechnology.
$3
677715
650
2 4
$a
Developmental Biology.
$3
668567
650
2 4
$a
Plant Physiology.
$3
579850
650
2 4
$a
Transgenics.
$3
784996
700
1
$a
Bahadur, Bir.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
882355
700
1
$a
Venkat Rajam, Manchikatla.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1261892
700
1
$a
Sahijram, Leela.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1261893
700
1
$a
Krishnamurthy, K. V.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1265897
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9788132222842
776
0 8
$i
Printed edition:
$z
9788132222828
776
0 8
$i
Printed edition:
$z
9788132235354
856
4 0
$u
https://doi.org/10.1007/978-81-322-2283-5
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入