語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Virtual Turning Points
~
Honda, Naofumi.
Virtual Turning Points
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Virtual Turning Points/ by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei.
作者:
Honda, Naofumi.
其他作者:
Kawai, Takahiro.
面頁冊數:
XII, 126 p. 47 illus., 6 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematical physics. -
電子資源:
https://doi.org/10.1007/978-4-431-55702-9
ISBN:
9784431557029
Virtual Turning Points
Honda, Naofumi.
Virtual Turning Points
[electronic resource] /by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei. - 1st ed. 2015. - XII, 126 p. 47 illus., 6 illus. in color.online resource. - SpringerBriefs in Mathematical Physics,42197-1757 ;. - SpringerBriefs in Mathematical Physics,8.
1. Definition and basic properties of virtual turning Points -- 2. Application to the Noumi-Yamada system with a large Parameter -- 3. Exact WKB analysis of non-adiabatic transition problems for 3-levels -- A. Integral representation of solutions and the Borel resummed WKBsolutions.
The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
ISBN: 9784431557029
Standard No.: 10.1007/978-4-431-55702-9doiSubjects--Topical Terms:
527831
Mathematical physics.
LC Class. No.: QA401-425
Dewey Class. No.: 530.15
Virtual Turning Points
LDR
:02488nam a22004095i 4500
001
970579
003
DE-He213
005
20200706024756.0
007
cr nn 008mamaa
008
201211s2015 ja | s |||| 0|eng d
020
$a
9784431557029
$9
978-4-431-55702-9
024
7
$a
10.1007/978-4-431-55702-9
$2
doi
035
$a
978-4-431-55702-9
050
4
$a
QA401-425
050
4
$a
QC19.2-20.85
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
530.15
$2
23
100
1
$a
Honda, Naofumi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1067410
245
1 0
$a
Virtual Turning Points
$h
[electronic resource] /
$c
by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei.
250
$a
1st ed. 2015.
264
1
$a
Tokyo :
$b
Springer Japan :
$b
Imprint: Springer,
$c
2015.
300
$a
XII, 126 p. 47 illus., 6 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Mathematical Physics,
$x
2197-1757 ;
$v
4
505
0
$a
1. Definition and basic properties of virtual turning Points -- 2. Application to the Noumi-Yamada system with a large Parameter -- 3. Exact WKB analysis of non-adiabatic transition problems for 3-levels -- A. Integral representation of solutions and the Borel resummed WKBsolutions.
520
$a
The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Differential equations.
$3
527664
650
0
$a
Quantum physics.
$3
1179090
650
1 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Quantum Physics.
$3
671960
700
1
$a
Kawai, Takahiro.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
898748
700
1
$a
Takei, Yoshitsugu.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1067411
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9784431557036
776
0 8
$i
Printed edition:
$z
9784431557012
830
0
$a
SpringerBriefs in Mathematical Physics,
$x
2197-1757 ;
$v
8
$3
1263793
856
4 0
$u
https://doi.org/10.1007/978-4-431-55702-9
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入