語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Microbial Factories = Biodiversity, ...
~
Kalia, Vipin Chandra.
Microbial Factories = Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Microbial Factories/ edited by Vipin Chandra Kalia.
其他題名:
Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 /
其他作者:
Kalia, Vipin Chandra.
面頁冊數:
XI, 355 p. 85 illus., 38 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Biodiversity. -
電子資源:
https://doi.org/10.1007/978-81-322-2595-9
ISBN:
9788132225959
Microbial Factories = Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 /
Microbial Factories
Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 /[electronic resource] :edited by Vipin Chandra Kalia. - 1st ed. 2015. - XI, 355 p. 85 illus., 38 illus. in color.online resource.
1. Biopolymers and their Application as Biodegradable Plastics -- 2. Approaches for the Synthesis of Tailor-made Polyhydroxyalkanoates -- 3. Biodegradable Polymers: Renewable Nature, Life Cycle and Applications -- 4. Phylogenetic Affiliation of Pseudomonas sp. MO2, a Novel Polyhydroxyalkanoate Synthesizing Bacterium -- 5. Synthetic Biology Strategies for Polyhydroxyalkanoates Synthesis -- 6. Frontiers in Biomedical Engineering: PHA Fabricated Implants -- 7. Sporulation, a Pitfall in the Path of PHB Production! -- 8. Microbial Biopolymers: The Exopolysaccharides -- 9. Innovations in Microalgal Harvesting using Biopolymer Based Approach -- 10. From microbial biopolymers to bioplastics: sustainable additives for PHB processing and stabilization -- 11. The Survivors of the Extreme: Bacterial biofilms -- 12. Synthetic Biology in Aid of Bioactive Molecules -- 13. Biotechnology Implications of Extremophiles as Life Pioneers and Wellspring of Valuable Biomolecules -- 14. Microbial CRISPER-Cas System: from Bacterial Immunity to Next Generation Antimicrobials -- 15. Photorhabdus: a Microbial Factory of Insect Killing Toxins -- 16. Microbial Vesicles: From Ecosystem to Diseases -- 17. Bacteriophage Diversity in Different Habitats and Their Role in Pathogen Control -- 18. Metagenomics: A Systemic Approach To Explore Microbial World -- 19. In silico Reconstitution of Novel Routes for Microbial Plastic -- 20. Investigating the Phylogeny of Hydrogen Metabolism by Comparative Genomics: Horizontal Gene Transfer -- 21. Prokaryotic Contributions Towards Eukaryotic Powerhouse. .
This book highlights the efforts made by distinguished scientific researchers world-wide to meet two key challenges: i) the limited reserves of polluting fossil fuels, and ii) the ever-increasing amounts of waste being generated. These case studies have brought to the foreground certain innovative biological solutions to real-life problems we now face on a global scale: environmental pollution and its role in deteriorating human health. The book also highlights major advances in microbial metabolisms, which can be used to produce bioenergy, biopolymers, bioactive molecules, enzymes, etc. Around the world, countries like China, Germany, France, Sweden and the US are now implementing major national programs for the production of biofuels. The book provides information on how to meet the chief technical challenges – identifying an industrially robust microbe and cheap raw material as feed. Of the various possibilities for generating bioenergy, the most attractive is the microbial production of biohydrogen, which has recently gained significant recognition worldwide, due to its high efficiency and eco-friendly nature. Further, the book highlights factors that can make these bioprocesses more economical, especially the cost of the feed. The anaerobic digestion (AD) process is more advantageous in comparison to aerobic processes for stabilizing biowastes and producing biofuels (hydrogen, biodiesel, 1,3-propanediol, methane, electricity), biopolymers (polyhydroxyalkanoates, cellulose, exopolysaccharides) and bioactive molecules (such as enzymes, volatile fatty acids, sugars, toxins, etc.) for biotechnological and medical applications. Information is provided on how the advent of molecular biological techniques can provide greater insights into novel microbial lineages. Bioinformatic tools and metagenomic techniques have extended the limits to which these biological processes can be exploited to improve human welfare. A new dimension to these scientific works has been added by the emergence of synthetic biology. The Big Question is: How can these Microbial Factories be improved through metabolic engineering and what cost targets need to be met?
ISBN: 9788132225959
Standard No.: 10.1007/978-81-322-2595-9doiSubjects--Topical Terms:
593899
Biodiversity.
LC Class. No.: QH541.15.B56
Dewey Class. No.: 577
Microbial Factories = Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 /
LDR
:05152nam a22003975i 4500
001
970635
003
DE-He213
005
20200630004753.0
007
cr nn 008mamaa
008
201211s2015 ii | s |||| 0|eng d
020
$a
9788132225959
$9
978-81-322-2595-9
024
7
$a
10.1007/978-81-322-2595-9
$2
doi
035
$a
978-81-322-2595-9
050
4
$a
QH541.15.B56
072
7
$a
RNCB
$2
bicssc
072
7
$a
SCI020000
$2
bisacsh
072
7
$a
RNCB
$2
thema
082
0 4
$a
577
$2
23
245
1 0
$a
Microbial Factories
$h
[electronic resource] :
$b
Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 /
$c
edited by Vipin Chandra Kalia.
250
$a
1st ed. 2015.
264
1
$a
New Delhi :
$b
Springer India :
$b
Imprint: Springer,
$c
2015.
300
$a
XI, 355 p. 85 illus., 38 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Biopolymers and their Application as Biodegradable Plastics -- 2. Approaches for the Synthesis of Tailor-made Polyhydroxyalkanoates -- 3. Biodegradable Polymers: Renewable Nature, Life Cycle and Applications -- 4. Phylogenetic Affiliation of Pseudomonas sp. MO2, a Novel Polyhydroxyalkanoate Synthesizing Bacterium -- 5. Synthetic Biology Strategies for Polyhydroxyalkanoates Synthesis -- 6. Frontiers in Biomedical Engineering: PHA Fabricated Implants -- 7. Sporulation, a Pitfall in the Path of PHB Production! -- 8. Microbial Biopolymers: The Exopolysaccharides -- 9. Innovations in Microalgal Harvesting using Biopolymer Based Approach -- 10. From microbial biopolymers to bioplastics: sustainable additives for PHB processing and stabilization -- 11. The Survivors of the Extreme: Bacterial biofilms -- 12. Synthetic Biology in Aid of Bioactive Molecules -- 13. Biotechnology Implications of Extremophiles as Life Pioneers and Wellspring of Valuable Biomolecules -- 14. Microbial CRISPER-Cas System: from Bacterial Immunity to Next Generation Antimicrobials -- 15. Photorhabdus: a Microbial Factory of Insect Killing Toxins -- 16. Microbial Vesicles: From Ecosystem to Diseases -- 17. Bacteriophage Diversity in Different Habitats and Their Role in Pathogen Control -- 18. Metagenomics: A Systemic Approach To Explore Microbial World -- 19. In silico Reconstitution of Novel Routes for Microbial Plastic -- 20. Investigating the Phylogeny of Hydrogen Metabolism by Comparative Genomics: Horizontal Gene Transfer -- 21. Prokaryotic Contributions Towards Eukaryotic Powerhouse. .
520
$a
This book highlights the efforts made by distinguished scientific researchers world-wide to meet two key challenges: i) the limited reserves of polluting fossil fuels, and ii) the ever-increasing amounts of waste being generated. These case studies have brought to the foreground certain innovative biological solutions to real-life problems we now face on a global scale: environmental pollution and its role in deteriorating human health. The book also highlights major advances in microbial metabolisms, which can be used to produce bioenergy, biopolymers, bioactive molecules, enzymes, etc. Around the world, countries like China, Germany, France, Sweden and the US are now implementing major national programs for the production of biofuels. The book provides information on how to meet the chief technical challenges – identifying an industrially robust microbe and cheap raw material as feed. Of the various possibilities for generating bioenergy, the most attractive is the microbial production of biohydrogen, which has recently gained significant recognition worldwide, due to its high efficiency and eco-friendly nature. Further, the book highlights factors that can make these bioprocesses more economical, especially the cost of the feed. The anaerobic digestion (AD) process is more advantageous in comparison to aerobic processes for stabilizing biowastes and producing biofuels (hydrogen, biodiesel, 1,3-propanediol, methane, electricity), biopolymers (polyhydroxyalkanoates, cellulose, exopolysaccharides) and bioactive molecules (such as enzymes, volatile fatty acids, sugars, toxins, etc.) for biotechnological and medical applications. Information is provided on how the advent of molecular biological techniques can provide greater insights into novel microbial lineages. Bioinformatic tools and metagenomic techniques have extended the limits to which these biological processes can be exploited to improve human welfare. A new dimension to these scientific works has been added by the emergence of synthetic biology. The Big Question is: How can these Microbial Factories be improved through metabolic engineering and what cost targets need to be met?
650
0
$a
Biodiversity.
$3
593899
650
0
$a
Microbial genetics.
$3
582864
650
0
$a
Microbial genomics.
$3
782637
650
2 4
$a
Microbial Genetics and Genomics.
$3
668641
700
1
$a
Kalia, Vipin Chandra.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1062607
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9788132225942
776
0 8
$i
Printed edition:
$z
9788132225966
776
0 8
$i
Printed edition:
$z
9788132237952
856
4 0
$u
https://doi.org/10.1007/978-81-322-2595-9
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入