Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Analyzing Time Interval Data = Intr...
~
SpringerLink (Online service)
Analyzing Time Interval Data = Introducing an Information System for Time Interval Data Analysis /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Analyzing Time Interval Data / by Philipp Meisen.
Reminder of title:
Introducing an Information System for Time Interval Data Analysis /
Author:
Meisen, Philipp.
Description:
XXXI, 232 p. 65 illus., 8 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Computers. -
Online resource:
https://doi.org/10.1007/978-3-658-15728-9
ISBN:
9783658157289
Analyzing Time Interval Data = Introducing an Information System for Time Interval Data Analysis /
Meisen, Philipp.
Analyzing Time Interval Data
Introducing an Information System for Time Interval Data Analysis /[electronic resource] :by Philipp Meisen. - 1st ed. 2016. - XXXI, 232 p. 65 illus., 8 illus. in color.online resource.
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data. Contents Modeling Time Interval Data Querying for Time Interval Data Similarity of Time Interval Data An Information System for Time Interval Data Analysis Target Groups Researchers and students in the field of information management Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science The Author Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
ISBN: 9783658157289
Standard No.: 10.1007/978-3-658-15728-9doiSubjects--Topical Terms:
565115
Computers.
LC Class. No.: QA75.5-76.95
Dewey Class. No.: 005.7
Analyzing Time Interval Data = Introducing an Information System for Time Interval Data Analysis /
LDR
:02728nam a22003975i 4500
001
970869
003
DE-He213
005
20200630005158.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783658157289
$9
978-3-658-15728-9
024
7
$a
10.1007/978-3-658-15728-9
$2
doi
035
$a
978-3-658-15728-9
050
4
$a
QA75.5-76.95
072
7
$a
UT
$2
bicssc
072
7
$a
COM069000
$2
bisacsh
072
7
$a
UT
$2
thema
082
0 4
$a
005.7
$2
23
100
1
$a
Meisen, Philipp.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1113483
245
1 0
$a
Analyzing Time Interval Data
$h
[electronic resource] :
$b
Introducing an Information System for Time Interval Data Analysis /
$c
by Philipp Meisen.
250
$a
1st ed. 2016.
264
1
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2016.
300
$a
XXXI, 232 p. 65 illus., 8 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
520
$a
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data. Contents Modeling Time Interval Data Querying for Time Interval Data Similarity of Time Interval Data An Information System for Time Interval Data Analysis Target Groups Researchers and students in the field of information management Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science The Author Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
650
0
$a
Computers.
$3
565115
650
0
$a
Data structures (Computer science).
$3
680370
650
0
$a
Software engineering.
$3
562952
650
1 4
$a
Information Systems and Communication Service.
$3
669203
650
2 4
$a
Data Structures and Information Theory.
$3
1211601
650
2 4
$a
Software Engineering/Programming and Operating Systems.
$3
669780
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783658157272
776
0 8
$i
Printed edition:
$z
9783658157296
776
0 8
$i
Printed edition:
$z
9783658215163
856
4 0
$u
https://doi.org/10.1007/978-3-658-15728-9
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login