語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analysis of Single-Cell Data = ODE ...
~
SpringerLink (Online service)
Analysis of Single-Cell Data = ODE Constrained Mixture Modeling and Approximate Bayesian Computation /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Analysis of Single-Cell Data / by Carolin Loos.
其他題名:
ODE Constrained Mixture Modeling and Approximate Bayesian Computation /
作者:
Loos, Carolin.
面頁冊數:
XXI, 92 p. 26 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Biomathematics. -
電子資源:
https://doi.org/10.1007/978-3-658-13234-7
ISBN:
9783658132347
Analysis of Single-Cell Data = ODE Constrained Mixture Modeling and Approximate Bayesian Computation /
Loos, Carolin.
Analysis of Single-Cell Data
ODE Constrained Mixture Modeling and Approximate Bayesian Computation /[electronic resource] :by Carolin Loos. - 1st ed. 2016. - XXI, 92 p. 26 illus.online resource. - BestMasters,2625-3577. - BestMasters,.
Modeling and Parameter Estimation for Single-Cell Data -- ODE Constrained Mixture Modeling for Multivariate Data -- Approximate Bayesian Computation Using Multivariate Statistics.
Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biological processes. The first method, ODE constrained mixture modeling, enables the identification of subpopulation structures and sources of variability in single-cell snapshot data. The second method estimates parameters of single-cell time-lapse data using approximate Bayesian computation and is able to exploit the temporal cross-correlation of the data as well as lineage information. Contents Modeling and Parameter Estimation for Single-Cell Data ODE Constrained Mixture Modeling for Multivariate Data Approximate Bayesian Computation Using Multivariate Statistics Target Groups Researchers and students in the fields of (bio-)mathematics, statistics, bioinformatics System biologists, biostatisticians, bioinformaticians The Author Carolin Loos is currently doing her PhD at the Institute of Computational Biology at the Helmholtz Zentrum München. She is member of the junior research group „Data-driven Computational Modeling“.
ISBN: 9783658132347
Standard No.: 10.1007/978-3-658-13234-7doiSubjects--Topical Terms:
527725
Biomathematics.
LC Class. No.: QH323.5
Dewey Class. No.: 570.285
Analysis of Single-Cell Data = ODE Constrained Mixture Modeling and Approximate Bayesian Computation /
LDR
:02735nam a22004095i 4500
001
971004
003
DE-He213
005
20200701005519.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783658132347
$9
978-3-658-13234-7
024
7
$a
10.1007/978-3-658-13234-7
$2
doi
035
$a
978-3-658-13234-7
050
4
$a
QH323.5
050
4
$a
QH324.2-324.25
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
570.285
$2
23
100
1
$a
Loos, Carolin.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1107082
245
1 0
$a
Analysis of Single-Cell Data
$h
[electronic resource] :
$b
ODE Constrained Mixture Modeling and Approximate Bayesian Computation /
$c
by Carolin Loos.
250
$a
1st ed. 2016.
264
1
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2016.
300
$a
XXI, 92 p. 26 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
BestMasters,
$x
2625-3577
505
0
$a
Modeling and Parameter Estimation for Single-Cell Data -- ODE Constrained Mixture Modeling for Multivariate Data -- Approximate Bayesian Computation Using Multivariate Statistics.
520
$a
Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biological processes. The first method, ODE constrained mixture modeling, enables the identification of subpopulation structures and sources of variability in single-cell snapshot data. The second method estimates parameters of single-cell time-lapse data using approximate Bayesian computation and is able to exploit the temporal cross-correlation of the data as well as lineage information. Contents Modeling and Parameter Estimation for Single-Cell Data ODE Constrained Mixture Modeling for Multivariate Data Approximate Bayesian Computation Using Multivariate Statistics Target Groups Researchers and students in the fields of (bio-)mathematics, statistics, bioinformatics System biologists, biostatisticians, bioinformaticians The Author Carolin Loos is currently doing her PhD at the Institute of Computational Biology at the Helmholtz Zentrum München. She is member of the junior research group „Data-driven Computational Modeling“.
650
0
$a
Biomathematics.
$3
527725
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Bioinformatics .
$3
1253897
650
0
$a
Computational biology .
$3
1253898
650
1 4
$a
Mathematical and Computational Biology.
$3
786706
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Computer Appl. in Life Sciences.
$3
593908
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783658132330
776
0 8
$i
Printed edition:
$z
9783658132354
830
0
$a
BestMasters,
$x
2625-3577
$3
1253531
856
4 0
$u
https://doi.org/10.1007/978-3-658-13234-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入