語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Spatio-Temporal Data Streams
~
Galić, Zdravko.
Spatio-Temporal Data Streams
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Spatio-Temporal Data Streams/ by Zdravko Galić.
作者:
Galić, Zdravko.
面頁冊數:
XIV, 107 p. 28 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Database management. -
電子資源:
https://doi.org/10.1007/978-1-4939-6575-5
ISBN:
9781493965755
Spatio-Temporal Data Streams
Galić, Zdravko.
Spatio-Temporal Data Streams
[electronic resource] /by Zdravko Galić. - 1st ed. 2016. - XIV, 107 p. 28 illus.online resource. - SpringerBriefs in Computer Science,2191-5768. - SpringerBriefs in Computer Science,.
Introduction -- Spatio-Temporal Continuous Queries -- Spatio-Temporal Data Streams and Big Data Paradigm -- Spatio-Temporal Data Stream Clustering.
This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing. Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data.
ISBN: 9781493965755
Standard No.: 10.1007/978-1-4939-6575-5doiSubjects--Topical Terms:
557799
Database management.
LC Class. No.: QA76.9.D3
Dewey Class. No.: 005.74
Spatio-Temporal Data Streams
LDR
:02633nam a22004095i 4500
001
972100
003
DE-He213
005
20200706005044.0
007
cr nn 008mamaa
008
201211s2016 xxu| s |||| 0|eng d
020
$a
9781493965755
$9
978-1-4939-6575-5
024
7
$a
10.1007/978-1-4939-6575-5
$2
doi
035
$a
978-1-4939-6575-5
050
4
$a
QA76.9.D3
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
072
7
$a
UMT
$2
thema
082
0 4
$a
005.74
$2
23
100
1
$a
Galić, Zdravko.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1267279
245
1 0
$a
Spatio-Temporal Data Streams
$h
[electronic resource] /
$c
by Zdravko Galić.
250
$a
1st ed. 2016.
264
1
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2016.
300
$a
XIV, 107 p. 28 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computer Science,
$x
2191-5768
505
0
$a
Introduction -- Spatio-Temporal Continuous Queries -- Spatio-Temporal Data Streams and Big Data Paradigm -- Spatio-Temporal Data Stream Clustering.
520
$a
This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing. Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data.
650
0
$a
Database management.
$3
557799
650
0
$a
Geographical information systems.
$3
1254121
650
0
$a
Computer communication systems.
$3
1115394
650
0
$a
Graph theory.
$3
527884
650
1 4
$a
Database Management.
$3
669820
650
2 4
$a
Geographical Information Systems/Cartography.
$3
670563
650
2 4
$a
Computer Communication Networks.
$3
669310
650
2 4
$a
Graph Theory.
$3
786670
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781493965731
776
0 8
$i
Printed edition:
$z
9781493965748
830
0
$a
SpringerBriefs in Computer Science,
$x
2191-5768
$3
1255334
856
4 0
$u
https://doi.org/10.1007/978-1-4939-6575-5
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入