語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The SenticNet Sentiment Lexicon: Exp...
~
SpringerLink (Online service)
The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts/ by Raoul Biagioni.
作者:
Biagioni, Raoul.
面頁冊數:
VI, 55 p. 13 illus., 8 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Neurosciences. -
電子資源:
https://doi.org/10.1007/978-3-319-38971-4
ISBN:
9783319389714
The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts
Biagioni, Raoul.
The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts
[electronic resource] /by Raoul Biagioni. - 1st ed. 2016. - VI, 55 p. 13 illus., 8 illus. in color.online resource. - SpringerBriefs in Cognitive Computation,42212-6023 ;. - SpringerBriefs in Cognitive Computation,5.
Introduction -- Sentiment Analysis -- SenticNet -- Unsupervised Sentiment Classification -- Evaluation -- Conclusion -- Index. .
The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used. This book will be of interest to students, educators and researchers in the field of Sentic Computing.
ISBN: 9783319389714
Standard No.: 10.1007/978-3-319-38971-4doiSubjects--Topical Terms:
593561
Neurosciences.
LC Class. No.: RC321-580
Dewey Class. No.: 612.8
The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts
LDR
:02122nam a22003975i 4500
001
972170
003
DE-He213
005
20200706005704.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319389714
$9
978-3-319-38971-4
024
7
$a
10.1007/978-3-319-38971-4
$2
doi
035
$a
978-3-319-38971-4
050
4
$a
RC321-580
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
072
7
$a
PSAN
$2
thema
082
0 4
$a
612.8
$2
23
100
1
$a
Biagioni, Raoul.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1108622
245
1 4
$a
The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts
$h
[electronic resource] /
$c
by Raoul Biagioni.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
VI, 55 p. 13 illus., 8 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Cognitive Computation,
$x
2212-6023 ;
$v
4
505
0
$a
Introduction -- Sentiment Analysis -- SenticNet -- Unsupervised Sentiment Classification -- Evaluation -- Conclusion -- Index. .
520
$a
The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used. This book will be of interest to students, educators and researchers in the field of Sentic Computing.
650
0
$a
Neurosciences.
$3
593561
650
0
$a
Natural language processing (Computer science).
$3
802180
650
0
$a
Semantics.
$3
555362
650
2 4
$a
Natural Language Processing (NLP).
$3
1254293
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319389707
776
0 8
$i
Printed edition:
$z
9783319389721
830
0
$a
SpringerBriefs in Cognitive Computation,
$x
2212-6023 ;
$v
5
$3
1266190
856
4 0
$u
https://doi.org/10.1007/978-3-319-38971-4
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入